FINAL - Volume II of II

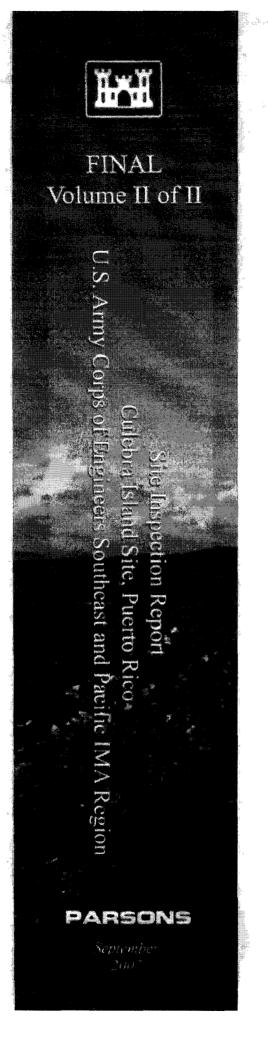
Site Inspection Report Culebra Island Site Puerto Rico

U.S. Army Corps of Engineers Southeast and Pacific IMA Region

Contract No. W912DY-04-D-0005 Task Order 0008

Prepared for

U.S. Army Corps of Engineers, Jacksonville District 701 San Marco Boulevard Jacksonville, Florida 32207 and


U.S. Army Engineering & Support Center, Huntsville 4820 University Square Huntsville, Alabama 35816-1822

Prepared by PARSONS

- 5390 Triangle Parkway, Suite 100 Noteross, Georgia 30092 September 2007

Лих унинде притрим слай со Кладинди Сонтрайда и Слор Аркитска, Кориз К. Ки актатура цеб указда со Коссановский акторатска. Пре ороново со Бассу Кос систом с рабок со казак умарся изберен как добраталя (Куссика Поло со со со со со

200-1e I02PR006802 01.09 0506

APPENDIX A PERFORMANCE WORK STATEMENT

Electronic copy included on enclosed CD

.

•

.

,

APPENDIX B

TECHNICAL PROJECT PLANNING SESSION DOCUMENTATION / MEETING MINUTES

Electronic copy included on enclosed CD

September 2007 Contract W912DY:04-D-0005

.-

Delivery Order 0008

B - 1

APPENDIX C

INTERVIEW DOCUMENTATION

No interviews were conducted as part of the Site Inspection.

September 2007 Contract W912DY-04-D-0005

,

.

`

. -

APPENDIX D

FIELD NOTES AND FIELD FORMS

D-1

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

. .

NTRACT NO.		W912DY-04-D-0005	DELIVERY OF	ADER NO.	0008
NO:		744647-17000	DATE/DAY:		24-Oct-06
E NAME:	-	Culebra, PR	REPORT NO:		3
CE DISTRIC	· Tr	CESAJ	SHEET:		1
ATHER:	Sunny. Mid to High	80s.			
RK IN PROG	RESS OR COMPLE	TED:		PREVIOUS	
	zation/Demobiliza			CUMULATIVE	CUMULATIVE
20	Miles Driven			80	100
	Number of Flights/	Miles Flown		4/6641	4/6641
4	Personnel:				4
2. Reconn	aissance Details				
20,285	Linear Feet:			~7000	27,285
	Discussion -				-
					-
3. MC Sa	mpling Details			·····	_ _
3. MC Sa	mpling Details				
	mpling Details SoilSamples Water Samples				
3	SoilSamples Water Samples	see Attached DOCR			
3	SoilSamples Water Samples	See Attached DQCR			
3 0	SoilSamples Water Samples Sampling Notes: S	See Attached DQCR			
3	SoilSamples Water Samples Sampling Notes: S	See Attached DQCR			
3 0 4. QC Act	SoilSamples Water Samples Sampling Notes: S	See Attached DQCR			0
3 0 4. QC Act	SoilSamples Water Samples Sampling Notes: S ivitles SoilSamples	See Attached DQCR			
3 0 4. QC Act	SoilSamples Water Samples Sampling Notes: S ivitles SoilSamples	See Attached DQCR			
3 0 4. QC Act	SoilSamples Water Samples Sampling Notes: S ivities SoilSamples Water Samples	See Attached DQCR			
3 0 4. QC Act	SoilSamples Water Samples Sampling Notes: S ivities SoilSamples Water Samples	See Attached DQCR			

Safety brief was conducted covering PPE, noxious plants, tripping hazards, cliffs on the island, and QR safety.

PARSONS WORKFO	RCE	On-site Yes/No	Tailgate Brief Yes/No
Parsons FTL - Nancy Heflin	Cell Phone: 303-960-8797	Yes	Yes
Parsons UXO Technician/SSHO - Rick White	Cell Phone: 506-874-5940	Yes	Yes
Parsons Sampling Technician - Erich Stedman	Cell Phone: 678-595-8650	Yes	Yes
Parsons Field Team Member - Brian Barker	Cell Phone: 678-907-4281	Yes	Yes
VISITORS			

EQUIPMENT LIST:

Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos

ADDITIONAL INFORMATION:

QR in MRS 09 revealed that there is no way to access SS#09 from the main land. Other alternatives such as the possibility of reaching it from the water will be attempted. Internet access is only available in town and access has not been reliable. Any correspondence requiring attention from the SVT should be done via telephone. The Daily will be sent each morning if internet is not available at that time will be attempted again mid day and in the evening until the Daily is sent. Please call with all questions.

All other site details recorded in PDA/Logbook		-		
ACTIVITIES SCHEDULED FOR NEXT WORK DAY:				
· · · · · · · · · · · · · · · · · · ·	•			
THE ACTUME AND ADDRESS AND ADDRESS ADDRES		 	 	

FTL will meet with FWS to planned field activities around endangered species nesting areas. Brian Barker will take ferry and fly back from Fajardo to ship soil samples from Monday and Tuesday. FTL will coordinate with Tammy Chang to ensure that she knows that samples have been held and when they should be expected by the lab. Erich and Rick will visit area near Flamenco beach to revisit an item found previously for further identification and collect track where GPS battery failed on Monday. FTL will attempt again to contact Hill Construction for access to SS#20. ROE has been granted stating that property owner must be reached prior to entering the site. FTL will coordinate with Luis Ayala to ensure that ROE has been signed and returned from the Sewage Treatment Facilities where ROE was obtained for SS #15 as ROE was refused from previous location. FTL will coordinate with FWS for use of kayaks for access to Flamenco Lagoon, and possible access to SS #9 by water from one bay to the west where water access is available. Erich will contact Captain Jerry to coordinate access to the cayos on Thursday. If needed logistics may require different actions. September 2007

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

REQUEST FOR PROJECT ACTION:

ACCIDENTS REPORTED TODAY: ACCIDENTS TO DATE:

Prepared By Field Team Leader: Nancy Heflin

DAILY CONTRACTOR QUALITY CONTROL REPORT

0

0

Contract Number:	W912DY-04-D-0005
Delivery Order Number:	0008
Project Name:	MMRP FUDS SI
Project Number:	744647-17000
Site Location:	Culebra, PR
Date:	24-Oct-06

Activities Conducted:

FTL met with Ellis Environmental to discuss field actions that may conflict with clearance on Cerro Balcon. The decision was discussed with Michael Short. Parsons will collect data on Friday and Sunday as Ellis will not be working on those days. It was discussed with Ellis and they agreed with the plan. SVT collected QR and SS#19 on the property where ROE was granted and vegetation would allow access. QR and SS#21 were also collected. FTL left message with property owner at SS#20, call was not returned. QR was conducted on DNER property in MRS 09. SS#10 was collected as close as possible to the planned point. The area is surrounded by cliffs on three sides and dense vegetation throughout kept the field team accessing the planned location for SS #10. Sample was collected ~175m northwest of the planned location.

Work Planned for Tomorrow

Continue sample collection and QR.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C):	Cond (µS/cm)	Turb (NTU):	рН (s.u.):
N/A				
				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment)

N/A

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-14-06-16*	Soil	1 709	Metals and Expl.	10/25/2006	STL	ambient sample
CUL-05-06-19	Soil	0951	Metals and Expl.	10/25/2006	STL	
CUL-06-06-21	Soil	1114	Metals and Expl.	10/25/2006	STL	
CUL-09-06-10	Soil	1529	Metals and Expl.	10/25/2006	STL	

*Sample collected on 10/23/06 but listed to show shipment date

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found on next day's DQCR. Note that SS #16 was planned for shipment on 10/24 but was held on ice further and will be shipped on 10/25 due to ferry schedules and the need to ship from Isla Grande. All samples collected so far have been kept under ice. Fresh ice has been added to the cooler from time to time.

Departures from approved SAP:

Samples will be held on ice for shipment on 10/25/06

Instructions given by government personnel:

None

Check all attachments:

Field sampling forms (in separate submittal)

Field-generated analytical results

Chain-of-custody forms (in separate submittal)

Signed by:

Name Up:

Name	Nancy Heflin, FTL			
Date:	24-Oct-06			
Phone	Mobile: 303-960-8797 Office#: 678-969-2362			
Copies se	nt to:			
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)		
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)		
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)		
	Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)		
	Tammy Chang (Parsons)			

.

NTRACT NO.	W912DY-04-D-0005	DELIVERY ORDER NO.	0008
NO:	744647-17000	DATE/DAY;	25-Oct-06
E NAME:	Culebra, PR	REPORT NO:	3
CE DISTRIC	CESAJ	SHEET:	1
ATHER:	Very Sunny. High 80s.		
RK IN PROG	RESS OR COMPLETED:	PREVIOUS	
1. Mobiliz	ation/Demobilization	CUMULATIVE	CUMULATIVE
30	Miles Driven	80	110
0	Number of Flights/Miles Flown	4/6641	4/6641
4	Personnel:		4
2. Reconna	aissance Details		
19,098	Linear Feet:	27,285	46,383
	Discussion -		
	·	· ·	
3. MC Sar	mpling Details		
2	Soil Samples		6
0	Water Samples		0
	Sampling Notes: See Attached DOCR		
4. QC Acti	ivities		
0	Soil Samples		0
0	Water Samples		0
	· · · · · · · · · · · · · · · · · · ·		
5. QA Acti	vities		
0	Soil Samples		0
0	Water Samples		0
			<u></u>
6. Safety A	Ativitias		
0. Salety A			

Rick White conducted safety brief covering subjects such as sun protection, PPE, tripping and falling hazards, noxious plants and insects.

PARSONS WORKFO	RCE	On-site Yes/No	Tailgate Brief Yes/No
Parsons FTL - Nancy Heflin	Cell Phone: 303-960-8797	Ycs	Yes
Parsons UXO Technician/SSHO - Rick White	Cell Phone: 506-8745940	Yes	Yes
Parsons Sampling Technician - Erich Stedman	Cell Phone: 678-595-8650	Yes	Yes
Parsons Field Team Member - Brian Barker	Cell Phone: 678-907-4281	Yes	Yes
VISITORS			

EQUIPMENT LIST:

Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos

ADDITIONAL INFORMATION:

QR conducted in the vicinity of the water treatment plant and SS#15 was collected here as ROE was not granted in the original location. QR was conducted near SS#20 and sample was collected. Field team noted extremely dense vegetation in some areas. Team met with FWS to discuss endangered species avoidance and made plans with DNR to meet at 3:00 for escort to the beach north of Mount Resaca. Field Team met with local Police and Firefighter personnel. Field team conducted QR on Police station property however the location was not close enough to planned sample #08 to collect. The Field Team could not determine the property owners of land near SS #07 or #08. ROE was not granted on SS #08 or 07 property. The Field team will look for a different property that may be acceptable later in the week. Samples shipped to laboratory supplies for sediment sampling were obtained. Field Team attempted to make contact with land owner near SS #11 and SS#13. Got the number of one property owner near Flamenco Lagoon.

Field Team will communicate with Luis (CESAJ) tomorrow for possible ROE in this area. The Field Team believes this would be a good alternate location for SS #11 as ROE has been granted but the parcels for which it has been granted can not be identified. (Luis has attempted to reach realtor on the island who can identify the parcels and has been unable to connect, a note was left on her door to call the field team to discuss the matter.) QR was conducted in the vicinity of the airport. No evidence of a small arms range was found. No locations have been or will be moved without consultation with the Project team.

All othe	r site details	recorded in	PDA/Logbook

ACTIVITIES SCHEDULED FOR NEXT WORK DAY:

Norte and collect QR and soil samples. REQUEST FOR PROJECT ACTIO!		SAJ PM and real estate representatives) concerning diffi	
ACCIDENTS REPORTED TODAY:			· · · · · · · · · · · · · · · · · · ·
ACCIDENTS TO DATE:	0	Prepared By Field Team Leader:	Nancy Heflin

DAILY CONTRACTOR QUALITY CONTROL REPORT

Contract Number:	W912DY-04-D-0005
Delivery Order Number:	_0008
Project Name:	MMRP FUDS SI
Project Number:	744647-17000
Site Location:	Culebra, PR
Date:	25-Oct-06

Activities Conducted:

QR near CUL-05-SS-06-15, CUL-14-SS-06-13, CUL-06-SS-06-20 and at the police station. Samples CUL-05-SS-06-15 and CUL-06-SS-06-20 were collected. CUL-14-SS-06-13 was not collected as no evidence of a small arms range was found. The Field Team will continue looking for evidence of small arms range to try to collect sample.

Work Planned for Tomorrow

Visit Cayo Norte and collect QR and soil samples.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C);	Cond (µS/cm)	Tu r b (NTU):	рН (s.u.):
N/A				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment)

N/A

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-05-SS-06-15	Soil	0832	Metals and Expl.	10/27/2006	STL	Samples held on ice for shipment.
CUL-06-SS-06-20	Soil	1030	Metals and Expl.	10/27/2006	STL	Samples held on ice for shipment.

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found here to show correction. Samples will be sent from San Juan Airport on Friday to ensure Saturday Delivery.

Departures from approved SAP:

Samples will be held on ice for shipment on 10/27/06

Instructions given by government personnel:

Mr. Luis Ayala says that no ROE is available near SS #08 and #07.

Check all attachments:

Field sampling forms (in separate submittal)

Field-generated analytical results

X Chain-of-custody forms (in separate submittal)

Signed by:

Name UK

Name	Nancy Heflin, FTL		
Date:	25-Oct-06		
Phone	Mobile: 303-960-8797	Office#: 678-969-2362	
Copies se	nt to:		
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)	
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)	
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)	
	Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)	
	Tammy Chang (Parsons)		

TRACT NO.	W912DY-04-D-0005	DELIVERY ORDER NO.	0008
iO:	744647-17000	ĐATE/DAY:	26-Oct-06
NAME:	Culebra, PR	REPORT NO:	5
CE DISTRICI		SHEET:	<u>I</u> I
THER:	Very Sunny. High 80s.		
K IN PROGE	RESS OR COMPLETED:	PREVIOUS	
1. Mobilíza	ation/Demobilization	CUMULATIVE	CUMULATIVE
5	Miles Driven	80	115
0	Number of Flights/Miles Flown	4/6641	4/6641
4	Personnel:	4	4
2. Reconna	issance Details		
			57,858
11,475	Linear Feet:	46,383	
· · · · · · · · · · · · · · · · · · ·	Linear Feet: Linear Feet visual by boat	46,383	28,821
28,821			
28,821	Linear Feet visual by boat		
28,821 3. MC San	Linear Feet visual by boat Discussion -		
28,821 3. MC San	Linear Feet visual by boat Discussion - pling Details		28,821
28,821 3. MC San 4 0	Linear Feet visual by boat Discussion - pling Details Soil Samples		28,821
28,821 3. MC San 4 0	Linear Feet visual by boat Discussion - ppling Details Soil Samples Water Samples Sampling Notes: See Attached DQCR		28,821
28,821 3. MC San 4 0	Linear Feet visual by boat Discussion - npling Details Soil Samples Water Samples Sampling Notes: See Attached DQCR		
28,821 3. MC San 4 0 4. QC Activ 0	Linear Feet visual by boat Discussion - npling Details Soil Samples Water Samples Sampling Notes: See Attached DQCR Vities Soil Samples		
28,821 3. MC San 4 0	Linear Feet visual by boat Discussion - npling Details Soil Samples Water Samples Sampling Notes: See Attached DQCR Vities		
28,821 3. MC San 4 0 4. QC Activ 0	Linear Feet visual by boat Discussion - npling Details Soil Samples Water Samples Sampling Notes: See Attached DQCR Vities Soil Samples		
28,821 3. MC San 4 0 4. QC Activ 0 0	Linear Feet visual by boat Discussion - npling Details Soil Samples Water Samples Sampling Notes: See Attached DQCR Vities Soil Samples Water Samples		
28,821 3. MC San 4 0 4. QC Activ 0 0 5. QA Activ	Linear Feet visual by boat Discussion - npling Details Soil Samples Water Samples Sampling Notes: See Attached DQCR Vities Soil Samples Water Samples		

6. Safety Activities

Rick White conducted safety brief covering subjects such as sun protection, boating safety and hazards, trips and falls.

PARSONS WORKFORCE		On-site Yes/No	Tailgate Brief Yes/No
Parsons FTL - Nancy Heflin	Cell Phone: 303-960-8797	Yes	Yes
Parsons UXO Technician/SSHO - Rick White	Cell Phone: 506-8745940	Yes	. Yes
Parsons Sampling Technician - Erich Stedman	Cell Phone: 678-595-8650	Yes	Yes
Parsons Field Team Member - Brian Barker	Cell Phone: 678-907-4281	Yes	Yes
VISITORS			

EQUIPMENT LIST:

Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos, Dry Bags, loppers.

ADDITIONAL INFORMATION:

QR conducted on Cayo Norte. Extremely difficult vegetation and terrain. CUL-08-SS-06-24, CUL-08-SS-06-23, and CUL-08-SE-06-05 were collected on Cayo Norte. Cayo Geniqui was visited and QR was done using the Rhino on the accessible part of the island. CUL-09-SS-06-09 was collected by access from the water. The entire area is overgrown mangroves and inaccessible on foot. Cays north of Cayo Norte were visited via boat but were inaccessible as surrounded by rocky outcrops and rough surf.

		· · · · · · · · · · · · · · · · · · ·		
	All other site details recorded	l in PDA/Logbook		
ACTIVITIES SCHEDULED FOR NE	EXT WORK DAY:			
Visit Cerro Balcon and collect soil samp	les.		•	
REQUEST FOR PROJECT ACTION	l:			
ACCIDENTS REPORTED TODAY:	0	-		
ACCIDENTS TO DATE:	0	Prepared By Field Team Leader:	Nancy Heflin	
		nber 2007		
) - 8	Contract W91	2DY-04-D-0005	Delivery Order	8000

DAILY CONTRACTOR QUALITY CONTROL REPORT

Contract Number:	W912DY-04-D-0005
Delivery Order Number:	0008
Project Name:	MMRP FUDS SI
Project Number:	744647-17000
Site Location:	Culebra, PR
Date:	26-Oct-06

Activities Conducted:

QR on Cayo Norte and collected CUL-08-SS-24, CUL-08-SS-06-23, CUL-08-SE-06-05 and on Culebra collected CUL-09-SS-06-09 via boat access.

Work Planned for Tomorrow Visit Cerro Balcon and collect QR and soil samples.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C):	Cond (µS/cm)	Turb (NTU):	pH (s.u.):
N/A				
				I

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment) N/A

.

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-08-SE-06-05	Sediment	1026	Metals and Expl.	10/27/2006	STL	Samples held on ice for shipment.
CUL-08-SS-06-24	Soil	1056	Metals and Expl.	10/27/2006	STL	Samples held on ice for shipment.
CUL-08-SS-06-23	Soil	1147	Metals and Expl.	10/27/2006	STL	Samples held on ice for shipment.
CUL-09-SS-06-09	Soil	1602	Metals and Expl.	10/27/2006	STL	Samples held on ice for shipment.

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found here to show correction. Samples will be sent from San Juan Airport on Friday to ensure Saturday Delivery.

Departures from approved SAP:

Samples will be held on ice for shipment on 10/27/06

Instructions given by government personnel:

Check all attachments:

Field sampling forms (in separate submittal)

Field-generated analytical results

Chain-of-custody forms (in separate submittal)

Signed by:

Name UK

Name	Nancy Heflin, FTL		
Date:	26-Oct-06		
Phone	Mobile: 303-960-8797	Office#: 678-969-2362	
Copies se	nt to:		
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)	
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)	
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)	
	Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)	
	Tammy Chang (Parsons)		

,

NTRACT NO.	W912DY-04-D-0005	DELIVERY ORDER NO)	0008
B NO:	744647-17000	DATE/DAY:		27-Oct-06
E NAME:	Culebra, PR	REPORT NO:		5
ACE DISTRICT:	CESAJ	SHEET:		1
ATHER: Very Sunny	. High 80s.			
RK IN PROGRESS OR C	OMPLETED.	PREV	IOUS	
1. Mobilization/Dem	-	CUMU	LATIVE	CUMULATIVE
40 Miles Drive			15	155
	Flights/Miles Flown		4	4
0 Personnel:			4	4
				_
2. Reconnaissance Ac	reage			
17,032 Linear Fee	1:	57,	858	74,890
	t visual by boat	28,	821	28,821
Discussion	-			
				-
				-
3. MC Sampling Det	ails			
2 Soil Sample				12
0 Water Sam				0
	Notes: See Attached DQCR			
				-
4. QC Activities	·····			-
3 Soil Sample	es			3
0 Water Sam				0
	Notes: See Attached DQCR	· · · · · · · · · · · · · · · · · · ·	<u></u>	
B	<u> </u>			-
5. QA Activities				
1 Soil Sample	es			1
0 Water Sam	ples			0
	Notes: See Attached DQCR			
				-
6. Safety Activities				-
o. Salety Activities				-

Rick White conducted safety brief covering eye protection, biological hazards, and trip hazards. Another hatch of mosquitoes came out yesterday. They are completely indifferent to OFF and team members are covered in mosquito bites.

PARSONS WORKFOR	RČE	On-site Yes/No	Tailgate Brief Yes/No
Parsons FTL - Nancy Heflin	Cell Phone: 303-960-8797	Yes	Yes
Parsons UXO Technician/SSHO - Rick White	Cell Phone: 506-8745940	Yes	Yes
Parsons Sampling Technician - Erich Stedman	Cell Phone: 678-595-8650	Yes	Yes
Parsons Field Team Member - Brian Barker	Cell Phone: 678-907-4281	Yes	Yes
VISITORS			

EQUIPMENT LIST:

Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos.

ADDITIONAL INFORMATION:

QR conducted between CUL-05-SS-06-17 and CUL-05-SS-06-18. Extremely difficult vegetation and terrain. QR around CUL-05-SS-06-17 was done by crawling under the vegetation and was accomplished at a very slow pace. A jeep trail was followed near CUL-05-SS-06-18 toward Ellis Environmental's Magazine and QR was conducted moving off of the trail and looping back where vegetation allowed. Cow trails in this area allowed for some access into the brush without crawling.

ACTIVITIES SCHEDULED FO		r site details recorded in PDA DAY:	Logbook	· · · · · · · · · · · · · · · · · · ·
The field team will take Saturday safely traverse. QR will also be concepted and the saturday of the saturday safely traverse. The saturday saturday safely the saturday satur	onducted in Area 06.		the north side of Cerro Balcon as possil	ole - terrain may be too difficult to
ACCIDENTS REPORTED TODAY: ACCIDENTS TO DATE: D - 11	0	September 200 Contract W912DY-04-		Nancy Heflin Delivery Order 0008

.

DAILY CONTRACTOR QUALITY CONTROL REPORT

Contract Number:	W912DY-04-D-0005
Delivery Order Number:	0008
Project Name:	MMRP FUDS SI
Project Number:	744647-17000
Site Location:	Culebra, PR
Date:	27-Oct-06

Activities Conducted:

QR and collected samples CUL-05-SS-06-17 and CUL-05-SS-06-18.

Work Planned for Tomorrow Visit Cerro Balcon and Area 06 to conduct QR.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C);	Cond (µS/cm)	Turb (NTU):	рН (s.u.);
N/A				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment)

N/A

1

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-05-SS-06-17	Soil	0942	Metals and Expl.	10/30/2006	STL	MS/MSD
CUL-05-SS-06-17-QA	Soil	0942	Metals and Expl.	10/30/2006	GPL	
CUL-06-SS-06-29	Soil	1607	Metals and Expl.	10/30/2006	STL	FD of CUL-05-SS-06-17
CUL-05-SS-06-18	Soil	1353	Metals and Expl.	10/30/2006	STL	

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found here to show correction. Samples will be sent from Puerto Rico on Monday.

Departures from approved SAP:

Samples will be held on ice for shipment on 10/30/06.

Instructions given by government personnel:

Check all attachments:

Field sampling forms (in separate submittal)
Field-generated analytical results

Chain-of-custody forms (in separate submittal)

Signed by:

Name UK:

Nancy Heflin, FTL	
27-Oct-06	
Mobile: 303-960-8797	Office#: 678-969-2362
to:	
Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)
Heidi Novotny (HTRW CX)	Becky Teny (USAESCH)
Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)
Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)
Tammy Chang (Parsons)	

CONTRACT NO.	W912DY-04-D-0005	DELIVERY ORDER NO.	0008
OB NO:	744647-17000	DATE/DAY:	29-Oct-06
ITE NAME:	Culebra, PR	REPORT NO:	7
JSACE DISTRIC		SHEET:	1
VEATHER:	Partly cloudy in the morning and sunny in the afternoon. His	gh 80s.	
	RESS OR COMPLETED:	PREVIOUS	
	ation/Demobilization	CUMULATIVE	CUMULATIVE
40	Miles Driven	155	195
	Number of Flights/Miles Flown	4	4
0	Personnel:	4	4
2. Reconna	aissance Details		
46,178	Linear Feet:	74,890	121,068
0	Linear Feet visual by boat	28,821	28,821
	Discussion -		
3. MC Sar	npling Details		_
3	Soil and Sediment Samples		15
0	Water Samples		0
	Sampling Notes: See Attached DQCR		
			_
4. QC Acti	vities		-
1	Soil and Sediment Samples		4
0	Water Samples		0
	Sampling Notes: See Attached DQCR		
			_
5. QA Acti	vities		
1	Soil and Sediment Samples		2
0	Water Samples		0
	Sampling Notes: See Attached DQCR		

6. Safety Activities

Rick White conducted safety brief covering hydration, slips, trips, falls, and hazard communication.

PARSONS WORKFOR	CE	On-site Yes/No	Tailgate Brief Yes/No
Parsons FTL - Nancy Heflin	Cell Phone: 303-960-8797	Yes	Yes
Parsons UXO Technician/SSHO - Rick White	Cell Phone: 506-8745940	Yes	Yes
Parsons Sampling Technician - Erich Stedman	Cell Phone: 678-595-8650	Yes	Yes
Parsons Field Team Member - Brian Barker	Cell Phone: 678-907-4281	Yes	Yes
VISITORS			

EQUIPMENT LIST:

Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos.

ADDITIONAL INFORMATION:

Conducted QR on the north side of Cerro Balcon and along the beach on the north side of the island facing Cayo Norte in the morning. Cut into Flamenco Lagoon to get sediment samples. CUL-04-SE-06-03 was collected at a water depth of 3 feet as the sediment on the bottom got to soft to walk in safely. The same happend at CUL-04-SE-06-04 at a depth of -2.5 feet and a distance of 15 feet from shore. Team cut through woods to get to CUL-04-SS-06-11. Due to extensive overhead canopy the GPS could not get a fix and will potenially not be able to post process to submeter accuracy. QR was conducted south of CUL-04-SS-06-11 and along the beach. QR along the west side of Flamenco Beach will be done on a weekday when there are not as many tourists present.

All other site details recorded in PDA/Logbook

ACTIVITIES SCHEDULED FOR NEXT WORK DAY:

Tomorrow the field team will conduct QR in Area 06 along roads and will meet with DNR to access the beaches on the north side of the island. QR will be conducted around the foot trail used to access the beaches.

REQUEST FOR PROJECT ACTION:

ACCIDENTS REPORTED TODAY:

0

September 2007 Contract W912DY-04-D-0005

DAILY CONTRACTOR QUALITY CONTROL REPORT

Contract Number:	W912DY-04-D-0005
Delivery Order Number:	0008
Project Name:	MMRP FUDS SI
Project Number:	744647-17000
Site Location:	Culebra, PR
Date:	29-Oct-06

Activities Conducted:

QR and collected samples CUL-04-SE-06-03, CUL-04-SE-06-04, and CUL-04-SS-06-11.

Work Planned for Tomorrow Visit Area 06 and the north side of Area 05 to conduct QR.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C):	Cond (µS/cm)	Turb (NTU):	pH (s.u.):
N/A				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment) N/A

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-04-SE-06-04	Sediment	1240	Metals and Expl.	10/30/2006	STL	
CUL-04-SE-06-03	Sediment	1303	Metals and Expl.	10/30/2006	STL	
CUL-04-SS-06-11	Soil	1534	Metals and Expl.	10/30/2006	STL	
CUL-04-SS-06-11-QA	Soil	1534	Metals and Expl.	10/30/2006	GPL	
CUL-04-SS-06-30	Soil	1628	Metals and Expl.	10/30/2006	STL	FD of CUL-04-SS-06-11

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found here to show correction. Samples will be sent from Puerto Rico on Monday.

Departures from approved SAP:

Samples will be held on ice for shipment on 10/30/06

Instructions given by government personnel:

Cneck an anachments:	Check	all	attachments:
----------------------	-------	-----	--------------

_	Field sampling forms (in separate submittal)
	Field-generated analytical results
	Chain-of-custody forms (in separate submittal)

Signed by:

Manag Up:

٠.

Nancy Heflin, FTL	
29-Oct-06	
Mobile: 303-960-8797	Office#: 678-969-2362
to:	
Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)
Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)
Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)
Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)
Tammy Chang (Parsons)	· ·

Delivery Order 0008

ONTRACT NO.	W912DY-04-D-0005	DELIVERY ORDER NO.	0008
DB NO:	744647-17000	DATE/DAY:	30-Oct-06
TE NAME:	Culebra, PR	REPORT NO:	8
SACE DISTRIC	T: CESAJ	SHEET:	1
EATHER:	Scattered showers in the morning. Partly cloudy Mic	d 80s in the afternoon.	
ORK IN PROG	RESS OR COMPLETED:	PREVIOUS	
	ation/Demobilization	CUMULATIVE	CUMULATIVE
40	Miles Driven	195	235
0	Number of Flights/Miles Flown	4	4
0	Personnel:	4	4
2. Reconn 29,808	aissance Acreage Linear Feet:	121,068	150,876
29,808	Linear Feet: Linear Feet visual by boat	28,821	28,821
	Discussion -	20,021	20,021
	Discussion -		
		· · · · · · · · · · · · · · · · · · ·	
4 MC Sa	mpling Details		
J. MC Ja	Sediment and Soil Samples		19
0	Water Samples	·····	0
	Sampling Notes: See Attached DQCR	· · · · · · · · · · · · · · · · · · ·	
4. QC Acti	ivities		<u>.</u>
0	Sediment and Soil Samples		4
0	Water Samples		0
5. QA Acti			-
0	Sediment and Soil Samples		2
0	Water Samples		0

	······································		
6. Safety A	ativitiae		

PARSONS WORKFO	RCE	On-site Yes/No	Tailgate Brief Ycs/No
Parsons FTL - Nancy Heflin	Cell Phone: 303-960-8797	Yes	Yes
Parsons UXO Technician/SSHO - Rick White	Cell Phone: 506-8745940	Yes	Yes
Parsons Sampling Technician - Erich Stedman	Cell Phone: 678-595-8650	Yes	Yes
Parsons Field Team Member - Brian Barker	Cell Phone: 678-907-4281	Yes	Yes
VISITORS			

EQUIPMENT LIST:

Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos.

ADDITIONAL INFORMATION:

When going to the approach into Zoni Lagoon, we ran into a representative from "Culebra Realty". He mentioned he has worked in this area (clearing land for buildings) for 13 years and has never found any munitions-related materials. He was referring to the developed hillside, south of Zoni Lagoon. He noted that the only access to the Lagoon was from the beach. QR was conducted on the beach and into the mangroves; however no GPS signal could be obtained due to the extensive tree canopy. There was some trash in the area but no munitions-related debris was observed. The sediment sample was taken over 25 feet into the lagoon in a water depth of ~3 feet. The Field Team met with an employee from the Mayor's office and was directed to the correct property that ROE had been granted for sample SS-05. The employee recommended returning in the late afternoon or evening to speak with the Mayor's brother who currently lives on the land so that he can point out the property boundaries.

The Team also collected CUL-11-SS-06-27 behind the school yard and collected CUL-10-SS-06-08 and conducted QR. QR was conducted and soil sample CUL-10-SS-06-07 was collected. Samples were sent out today. The Field Team spoke with FWS today. Teresa asked that the team avoid two areas on FWS land where an endangered species is present on "boulder fields". She stated that the boulder fields were covered in vegetation and could not be easily recognized; she pointed out the area on the maps. These areas were marked by the Field Team on field maps and will be avoided.

A	ll other site details recorded in PDA/Logbook	
ACTIVITIES SCHEDULED FOR NEXT W	ORK DAY:	

Tomorrow the field team will conduct QR and collect samples on Culebrita or Luis Pena Cayo depending on weather conditions.

PARSONS INFRASTRI	JCTURE AND	TECHNOLOGY	GROUP, INC

REQUEST FOR PROJECT ACTION:

ACCIDENTS REPORTED TODAY: ACCIDENTS TO DATE:

Prepared By Field Team Leader:

Nancy Heflin

DAILY CONTRACTOR QUALITY CONTROL REPORT

Contract Number:

W912DY-04-D-0005

0

0

Delivery Order Number:	0008
Project Name:	MMRP FUDS SI
Project Number:	744647-17000
Site Location:	Culebra, PR
Date:	30-Oct-06

Activities Conducted:

QR and collected CUL-05-SE-06-01, CUL-11-SS-06-27, CUL-10-SS-06-07, and CUL-10-SS-06-08.

Work Planned for Tomorrow QR and sampling on Culebrita or Luis Pena Cayo.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C):	Cond (µS/cm)	Turb (NTU):	pH (s.u.):
N/A				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment) N/A

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-05-SE-06-01	Sediment	1126	Metals and Expl.	11/1/2006	STL	
CUL-11-SS-06-27	Soil	1429	Metals and Expl.	11/1/2006	STL	ambient sample
CUL-10-SS-06-07	Soil	1605	Metals and Expl.	11/1/2006	STL	
CUL-10-SS-06-08	Soil	1704	Metals and Expl.	11/1/2006	STL	

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found here to show correction. Samples will be sent from Puerto Rico on Wednesday.

Departures from approved SAP:

Samples have been held on ice for shipment on 11/1/06

Instructions given by government personnel:

Check all attachments:

Field sampling forms (in separate submittal) Field-generated analytical results

Chain-of-custody forms (in separate submittal)

Signed by:

Nama Up.

е	Nancy Heflin, FTL	
:	30-Oct-06	
9	Mobile: 303-960-8797	Office#: 678-969-2362
es ser	nt to:	
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)
	Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)
	Tammy Chang (Parsons)	

NTRACT NO.	W912DY-04-D-0005	DELIVERY OR	DER NO.	0008
NO:	744647-17000	DATE/DAY:		
E NAME:	Culebra, PR	REPORT NO:		9
ACE DISTRICT:	CESAJ	SHEET:		1
ATHER: Scatte	red showers midday and in the afternoon. Par	rtly cloudy mid 80s most of the day.		
RK IN PROGRESS			PREVIOUS	
1. Mobilization/	Demobilization		CUMULATIVE	CUMULATIVE
20 Miles	Driven		235	255
0 Num	ber of Flights/Miles Flown		4	4
0 Person	nnel:		4	4
2. Reconnaissan	ce Details			-
	r Feet:	· · · · · · · · · · · · · · · · · · ·	150,876	168,877
	r Feet visual by boat		28,821	28,821
	ssion -	····		
				-
				-
3. MC Sampling	g Details			
2 Sedim	ent Samples			21
0 Water	Samples	,		0
Samp	ling Notes: See Attached DQCR			
				_
4. QC Activities				-
0 Sedim	ent Samples			4
0 Water	Samples		*****	0
	······································			
				-
5. QA Activities		· · · · · · · · · · · · · · · · · · ·		
	ent Samples			2
0 Water	Samples			0
6. Safety Activit	les			_
	d safety brief covering vehicle safety			-
Rick white conducte	a safety offer covering vehicle safety			
				-
	PARSONS WORKFORCE	2	On-site	Tailgate Brief
1		-	Yes/No	Yes/No
Parsons FTL - Nan	cy Heflin	Cell Phone: 303-960-8797	Yes	Yes
	cian/SSHO - Rick White	Cell Phone: 506-8745940	Yes	Yes
	chnician - Erich Stedman	Cell Phone: 678-595-8650	Yes	Yes
	Member - Brian Barker	Cell Phone: 678-907-4281	Yes	Yes

EQUIPMENT LIST:

Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos.

VISITORS

ADDITIONAL INFORMATION:

Traveled by charter boat to Luis Pena Cayo as this was the first day seas were calm enough to visit this cayo. QR and MC samples collected as planned despite difficulties due to dense vegetation and adverse terrain. As a result no other activities were conducted today. Several spent 5-inch projectiles were identified during the QR activities.

	All other site	e details recorded in PDA/Logbook	
ACTIVITIES SCHEDULED F			
Continue QR and MC sampling of	n Culebra in accordance	with information provided by Don Silkebakken and Laura Kelle	ey following conference call on
October 31 which included Tom	Freeman of USACE St L	ouis District and CESAJ personnel (Jose Mendez, Charles Fales	, Migdalia, and Robert Bridgers)
as well as USAESCH Chris Coch	rane. Parsons presented	the status to date of the SI and the team agreed to the remaining	QR and MC sampling revisions
as proposed.			
REQUEST FOR PROJECT A	CTION:		
-			
ACCIDENTS REPORTED TODAY:	0		
ACCIDENTS TO DATE:	0	Prepared By Field Team Leader:	Nancy Heflin

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

DAILY CONTRACTOR QUALITY CONTROL REPORT

Contract Number:	W912DY-04-D-0005
Delivery Order Number:	_0008
Project Name:	MMRP FUDS SI
Project Number:	744647-17000
Site Location:	Culebra, PR
<u>Date:</u>	31-Oct-06

Activities Conducted:

QR and collected samples CUL-13-SS-06-01 and CUL-13-SS-06-02

Work Planned for Tomorrow

QR and sampling on Culebrit or Luis Pena Cayo depending on weather conditions

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C):	Cond (µS/cm)	Turb (NTU):	рН (s.u.):
N/A				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment)

N/A

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-13-SS-06-01	Soil	1154	Metals and Expl.	11/1/2006	STL	
CUL-13-SS-06-02	Soil	1 42 0	Metals and Expl.	11/1/2006	STL	

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found here to show correction. Samples will be sent from Puerto Rico on Wednesday.

Departures from approved SAP:

Samples will be held on ice for shipment on 11/1/06

Instructions given by government personnel:

Check all attachments:

Field sampling forms (in separate submittal)

Field-generated analytical results

Chain-of-custody forms (in separate submittal)

Signed by:

Namag left.

ne	Nancy Heflin, FTL	
te:	31-Oct-06	
ne	Mobile: 303-960-8797	Office#: 678-969-2362
pies sei	nt to:	
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)
	Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)
	Tammy Chang (Parsons)	

1. M	ISTRIC A: PROG Iobiliz 20 0 0	744647-17000 Culebra, PR CESAJ Scattered showers mid day and in the afternoon. Partly SRESS OR COMPLETED: tation/Demobilization Miles Driven Number of Flights/Miles Flown Personnel: aissance Details Linear Feet: Linear Feet: Linear Feet visual by boat Discussion -		PREVIOUS UMULATIVE 255 4 4 168,877 28,821	1-Nov-06 9 1 CUMULATIVE 275 4 4 4 4
VORK IN 1. M 2. Re 23	STRIC PROG 10biliz 20 0 0 econna 3,719	T: CESAJ Scattered showers mid day and in the afternoon. Partly RESS OR COMPLETED: cation/Demobilization Miles Driven Number of Flights/Miles Flown Personnel: aissance Details Linear Feet: Linear Feet visual by boat	SHEET: r cloudy Mid 80s most of the day.	UMULATIVE 255 4 4 168,877	1 CUMULATIVE 275 4 4 4
VEATHER VORK IN 1. M 2. Re 23.	t: PROG Iobiliz 20 0 0 0 econna 3,719	Scattered showers mid day and in the afternoon. Partly RESS OR COMPLETED: tation/Demobilization Miles Driven Number of Flights/Miles Flown Personnel: aissance Details Linear Feet: Linear Feet visual by boat	cloudy Mid 80s most of the day.	UMULATIVE 255 4 4 168,877	CUMULATIVE 275 4 4 192,596
2. Re	PROG 1obiliz 20 0 0 econna 3,719	RESS OR COMPLETED: tation/Demobilization Miles Driven Number of Flights/Miles Flown Personnel: aissance Details Linear Feet: Linear Feet visual by boat		UMULATIVE 255 4 4 168,877	275 4 4
1. M	fobiliz 20 0 econna 3,719	eation/Demobilization Miles Driven Number of Flights/Miles Flown Personnel: aissance Details Linear Feet: Linear Feet visual by boat	C	UMULATIVE 255 4 4 168,877	275 4 4
1. M	fobiliz 20 0 econna 3,719	eation/Demobilization Miles Driven Number of Flights/Miles Flown Personnel: aissance Details Linear Feet: Linear Feet visual by boat	C	UMULATIVE 255 4 4 168,877	275 4 4
2. Re	20 0 0 econna 3,719	Miles Driven Number of Flights/Miles Flown Personnel: aissance Details Linear Feet: Linear Feet visual by boat		255 4 4 168,877	275 4 4
2. Re	0 0 econna 1,719	Number of Flights/Miles Flown Personnel: aissance Details Linear Feet: Linear Feet visual by boat		4 4 168,877	4 4
2. Re	0 econna 1,719	Personnel: aissance Details Linear Feet: Linear Feet visual by boat		168,877	192,596
23	,719	Linear Feet: Linear Feet visual by boat			
23	,719	Linear Feet: Linear Feet visual by boat			
		Linear Feet visual by boat			
	0			28,821	28.821
		Discussion -			
					_
					_
3. M	1C Sar	mpling Details			-
	4	Sediment and Soil Samples			25
	0	Water Samples			0
B		Sampling Notes: See Attached DQCR			
					-
4. Q0	C Acti	ivities			-
	0	Sediment and Soil Samples			4
	0	Water Samples			0
L					
					_
<u>5. Q</u> /	A Acti				
	0	Sediment and Soil Samples			2
	0	Water Samples			0
6. Sa	afety A	Activities			
Rick V	White co	onducted safety brief.			-
		· · · · · · · · · · · · · · · · · · ·	<i>n</i>		
		PARSONS WORKFORCE		On-site	Tailgate Brief

PARSONS WORKFO	RCE	On-site Yes/No	Tailgate Brief Yes/No
Parsons FTL - Nancy Heflin	Cell Phone: 303-960-8797	Yes	Yes
Parsons UXO Technician/SSHO - Rick White	Cell Phone: 506-8745940	Yes	Yes
Parsons Sampling Technician - Erich Stedman	Cell Phone: 678-595-8650	No	No
Parsons Field Team Member - Brian Barker	Cell Phone: 678-907-4281	Yes	Yes
VISITORS			

EQUIPMENT LIST:

Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos.

ADDITIONAL INFORMATION:

Culebrita was visited today. Vegetation and Terrain were very difficult. The team had to leave the island at 3:30 due to bad weather and rough seas. The team collected 4 samples and conducted some QR. The team will go back to Culebrita tomorrow to complete SI activities.

All other site de	tails record	orded in PDA/Logbook
ACTIVITIES SCHEDULED FOR NEXT WORK DAY:		

Tomorrow the field team will conduct QR and collect the remainder of the samples on Culebrita and attempt to visit the cays on the west side of Culebra. REQUEST FOR PROJECT ACTION:

ACCIDENTS REPORTED TODAY:
ACCIDENTS TO DATE:

0

Prepared By Field Team Leader:

Nancy Heflin

September 2007 Contract W912DY-04-D-0005

DAILY CONTRACTOR QUALITY CONTROL REPORT

Contract Number:	W912DY-04-D-0005
Delivery Order Number:	_0008
Project Name:	MMRP FUDS SI
Project Number:	744647-17000
Site Location:	Culebra, PR
Date:	1-Nov-06

Activities Conducted:

QR on Culebrita and down road and beach near CUL-11-SS-06-04 and CUL-11-SS-06-05. Collected CUL-07-SS-06-26, CUL 07-SS-06-22, CUL-11-SS-06-04 and CUL-11-SS-06-05. Field team was unable to complete work on Culebrita and had to return due to weather and rough seas. Sample CUL-11-SS-06-05 was collected off of the beach - at the closest accessible point to the original location.

Work Planned for Tomorrow

QR and sampling on the remainder of Culebrita.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C):	Cond (µS/cm)	Turb (NTU):	pH (s.u.):
N/A				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment)

N/A

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-07-SS-06-26	Soil	101 1	Metals and Expl.	11/3/2006	STL	
CUL-07-SS-06-22	Soil	1325	Metals and Expl.	11/3/2006	STL	ambient sample
CUL-11-SS-06-04	Soil	1604	Metals and Expl.	11/3/2006	STL	
CUL-11-SS-06-05	Soil	1658	Metals and Expl.	11/3/2006	STL	

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found here to show correction. Samples will be sent from Puerto Rico on Friday.

Departures from approved SAP:

Samples will be held on ice for shipment on 11/3/06

Instructions given by government personnel:

Check all attachments:

Field sampling forms (in separate submittal)

Field-generated analytical results

Chain-of-custody forms (in separate submittal)

Signed by:

Name Up:

Name	Nancy Heflin, FTL		
Date:	1-Nov-06		
hone	Mobile: 303-960-8797	Office#: 678-969-2362	
lopies se	nt to:		
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)	
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)	
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)	
	Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)	
	Tammy Chang (Parsons)		

CONTRACT NO.	W912DY-04-D-0005	DELIVERY ORDER	NO	0008
OB NO:	744647-17000	DATE/DAY:		2-Nov-06
ITE NAME:	Culebra, PR	REPORT NO:		11
JSACE DISTRIC		SHEET:		1
VEATHER:	Scattered showers mid day and in the afternoon. Partly c	loudy Mid 80s most of the day.		
VORK IN DROC	RESS OR COMPLETED:	DD	EVIOUS	
	ation/Demobilization		ULATIVE	CUMULATIVE
25	Miles Driven		275	300
	Number of Flights/Miles Flown		4	4
0	Personnel:		4	4
· · · ·	I ersonner.			
2. Reconn	aissance Details			-
10.604	Linear Feet:		92,596	203,200
17,377	Linear Feet visual by boat		28,821	46,198
	Discussion -			
				-
				-
3. MC Sa	mpling Details			-
2	Sediment and Soil Samples			27
0	Water Samples			0
	Sampling Notes: See Attached DQCR			-
				-
4. QC Acti	vities			-
3	Sediment and Soil Samples			7
0	Water Samples			0
	Sampling Notes: See Attached DQCR			
5. QA Acti	vities			
1	Sediment and Soil Samples			3
0	Water Samples			0
				- <u> </u>
				-
6. Safety A	ctivities			-
•		11		-
Rick White c	onducted safety brief covering boat safety and trips and fa	415		
				-

PARSONS WORKFOR	On-site Yes/No	Tailgate Brief Yes/No	
Parsons FTL - Nancy Heflin	Cell Phone: 303-960-8797	Ycs	Yes
Parsons UXO Technician/SSHO - Rick White	Cell Phone: 506-8745940	Ycs	Yes
Parsons Sampling Technician - Erich Stedman	Cell Phone: 678-595-8650	Yes	Yes
Parsons Field Team Member - Brian Barker	Cell Phone: 678-907-4281	Yes	Yes
VISITORS			

EQUIPMENT LIST:

Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos.

ADDITIONAL INFORMATION: The keys of Lobito, Monocay, the two keys off of Watercay were covered by boat QR. These islands were inaccessible by foot due to no safe approach because of cliffs and very rocky shores. The island of Watercay was visited and many MK 76 practice bombs were observed. The field team returned to Culebrita where soil sample CUL-07-SS-06-25 and sediment sample CUL-07-SE-06-02 were collected. Dense vegetation and water depth prevented the collection of sediment sample #2 from the proposed location. It was collected from the same lagoon as the proposed sample, but from a more accessible location. QR was performed on the northwest peninsula of Culebrita.

	All other site deta	ails recorded in PDA/Logbook	
ACTIVITIES SCHEDULED F	OR NEXT WORK DAY:		
will be performed. Samples will	be shipped to the lab.	06-03, CUL-11-SS-06-06, CUL-14-SS-06-13, and CUL-05	5-SS-06-14 and additional QR
REQUEST FOR PROJECT A	CTION:	·····	
ACCIDENTS REPORTED TODAY: ACCIDENTS TO DATE:	0 0	Prepared By Field Team Leader:	Nancy Heflin
D - 26	Cor	September 2007 htract W912DY-04-D-0005	Delivery Order 0008

DAILY CONTRACTOR QUALITY CONTROL REPORT

Contract Number:	W912DY-04-D-0005				
Delivery Order Number:	_0008				
Project Name:	MMRP FUDS SI				
Project Number:	744647-17000				
Site Location:	Culebra, PR				
Date:	2-Nov-06				

Activities Conducted:

The keys of Lobito, Monocay, the two keys off of Watercay were covered by boat QR. These islands were inaccessible by foo due to no safe approach because of cliffs and very rocky shores. The island of Watercay was visited and many MK 76 practice bombs were observed. The field team returned to Culebrita where soil sample CUL-07-SS-06-25 and sediment sample CUL-07-SE-06-02 were collected. Dense vegetation and water depth prevented the collection of sediment sample CUL-07-SE-06-02 from the proposed location. It was collected from the same lagoon as the proposed sample, but in a more accessible location. QR was performed on the northwest peninsula of Culebrita.

Work Planned for Tomorrow Tomorrow the field team will collect soil samples CUL-11-SS-06-03, CUL-11-SS-06-06, CUL-14-SS-06-13, and CUL-05-SS-06-14 and additional QR will be performed. Samples will be shipped to the laboratories.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C):	Cond (µS/cm)	Turb (NTU):	рН (s.u.):
N/A				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment)

N/A

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-07-SE-06-02	Sediment	1124	Metals and Expl.	11/3/2006	STL	
CUL-07-SS-06-25	Soil	1210	Metals and Expl.	11/3/2006	STL	MS/MSD
CUL-07-SS-06-25-QA	Soil	1210	Metals and Expl.	11/3/2006	GPL	QA split sample
CUL-07-SS-06-32	Soil	1604	Metals and Expl.	11/3/2006	STL	FD of CUL-07-SS-06-25

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found here to show correction. Samples will be sent from Puerto Rico on Friday.

Departures from approved SAP:

Samples will be held on ice for shipment on 11/3/06

Instructions given by government personnel:

Check all attachments:

Field sampling forms (in separate submittal)

Field-generated analytical results

Chain-of-custody forms (in separate submittal)

.

Signed by:

Name up:

Name	Nancy Heflin, FTL	
Date:	2-Nov-06	
Phone	Mobile: 303-960-8797	Office#: 678-969-2362
Copies se	nt to:	
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)
	Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)
	Tammy Chang (Parsons)	

ONTRACT NO	. W912DY-04-D-0005	DELIVERY ORDER NO.	0008
OB NO:	744647-17000	DATË/DAY:	3-Nov-06
TE NAME:	Culebra, PR	REPORT NO:	12
SACE DISTRIC		SHEET:	1
EATHER:	High 80s to low 90s, Sunny and Humid		
ORK IN PROC	GRESS OR COMPLETED:	PREVIOUS	
1. Mobili	zation/Demobilization	CUMULATIV	E CUMULATIVE
30	Miles Driven	300	330
0	Number of Flights/Miles Flown	4	4
0	Personnel:	4	4
2. Reconn	aissance Acreage		
13,662	Linear Feet:	203,200	216,862
0	Linear Feet visual by boat	46,198	46,198
	Discussion -		
			
3. MC Sa	mpling Details		
4	Sediment and Soil Samples		31
0	Water Samples		0
	Sampling Notes: See Attached DQCR		
	-		
4. QC Act	ivities		
0	Sediment and Soil Samples		7
0	Water Samples		0
		······································	
5. QA Act	ivities		
0	Sediment and Soil Samples		3
0	Water Samples		0
6. Safety A	Activities		
•			
Rick White c	conducted safety brief covering sun protection and ey	e protection.	

PARSONS WORKFORCE	On-site Yes/No	Tailgate Brief Yes/No	
Parsons FTL - Nancy Heflin	Cell Phone: 303-960-8797	Yes	Yes
Parsons UXO Technician/SSHO - Rick White	Cell Phone: 506-8745940	Yes	Yes
Parsons Sampling Technician - Erich Stedman	Cell Phone: 678-595-8650	Yes	Yes
Parsons Field Team Member - Brian Barker	Cell Phone: 678-907-4281	Yes	Yes
VISITORS			

EQUIPMENT LIST:

Minclab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos.

ADDITIONAL INFORMATION:

Samples shipped to the lab. QR was conducted enroute to CUL-05-SS-06-12 in the morning. The terrain was very steep and the vegetation was difficult. Large boulders with deep gaps between made travel difficult. QR was then conducted near CUL-05-SS-06-14 and sample was collected. The field team collected CUL-14-SS-06-13 and CUL-11-SS-06-06 in the afternoon, as well as conducted more QR between CUL-06-SS-06-21 and CUL-06-SS-06-20.

	All other site deta	uls recorded in PDA/Logbook	
ACTIVITIES SCHEDULED F	OR NEXT WORK DAY:		
Field team will conduct QR in th lands on Culebra, leaving the FW REQUEST FOR PROJECT A	S on the north side of the Islan	S-06-03 and collect referenced sample. Additional QR will nd for Sunday and Monday.	ll be done on any remaining
ABQUEST FOR TROSECTA			······································
ACCIDENTS REPORTED TODAY: ACCIDENTS TO DATE:	0 0	Prepared By Field Team Leader:	Nancy Heflin
		September 2007	

Contract W912DY-04-D-0005

Delivery Order 0008

DAILY CONTRACTOR QUALITY CONTROL REPORT

<u>Contract Number:</u> W912DY-04-D-0005 <u>Delivery Order Number:</u> 0008

Project Name:	MMRP FUDS SI
Project Number:	744647-17000
Site Location:	Culebra, PR
Date:	3-Nov-06

Activities Conducted:

QR and collected samples CUL-05-SS-06-12, CUL-05-SS-06-14, CUL-14-SS-06-13, and CUL-11-SS-06-06.

Work Planned for Tomorrow

Conduct QR and collect CUL-11-SS-06-03.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C):	Cond (µS/cm)	Turb (NTU):	рН (s.u.):
N/A				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment)

N/A

)

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-05-SS-06-12	Soil	1002	Metals and Expl.	11/7/2006	STL	
CUL-05-SS-06-14	Soil	1219	Metals and Expl.	11/7/2006	STL	
CUL-14-SS-06-13	Soil	1520	Metals and Expl.	11/7/2006	STL	
CUL-11-SS-06-06	Soil	1604	Metals and Expl.	11/7/2006	STL	

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found here to show correction. Samples will be sent from San Juan on Tuesday when Rick and Nancy leave.

Departures from approved SAP:

Samples will be held on ice for shipment on 11/7/06

Instructions given by government personnel:

Check all attachments:

Field sampling forms (in separate submittal)

Field-generated analytical results

Chain-of-custody forms (in separate submittal)

Signed by:

Name Up:

Name	Nancy Heflin, FTL 3-Nov-06				
Date:					
Phone	Mobile: 303-960-8797	Office#: 678-969-2362			
Copies se	nt to:				
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)			
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)			
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)			
	Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)			
	Tammy Chang (Parsons)				

.

DAILY FIELD REPORT MMRP SITE INSPECTION

FRACT NO).	W912DY-04-D-0005 744647-17000	DELIVERY ORI DATE/DAY:	DER NO	0008 4-Nov-06	
NO: NAME:		Culebra, PR	REPORT NO:		13	
TAME: CE DISTRI	ст.	CESAJ	SHEET:		1	
THER:		Os, Sunny and Humid			·	
	GRESS OR COMP	I ETEN.		PREVIOUS		
	ization/Demobil			UMULATIVE	CUMULATIV	
40	Miles Driven			330	370	
40	Number of Fligh	hts/Miles Flours		4	4	
0	Personnel:	nismues Flown		4	4	
					-	
	aissance Detail	S		01/ 0/0 I	232,853	
15,991	Linear Feet:			216,862	46,198	
0	Linear Feet visu Discussion -	al by boal		46,198	40,198	
			······································		-	
. MC Se	ampling Details		teritari tere en en esta esta esta esta esta esta esta esta			
1	Sediment and So	il Samples			32	
0	Water Samples				0	
v		See Attached DQCR			L	
					-	
l. QC Ac		4.0				
0	Sediment and So	ni Samples			7	
0	Water Samples		·····		v	
		· · · · · · · · · · · · · · · · · · ·			•	
5. QA Ac						
0	Sediment and So	ni Samples			3	
0	Water Samples				0	
					-	
•	Activities	- C			-	
lick white	conducted safety on	ef covering hazard communicatio	n and nyaration.			
		PARSONS WORKFORCE		On-site	Tailgate Brief	
				Yes/No	Yes/No	
arsone FTI	- Nancy Heflin		Cell Phone: 303-960-8797	Yes	Yes	
	O Technician/SSHO	- Rick White	Cell Phone: 505-980-8797 Cell Phone: 506-8745940	Yes	Yes	
	pling Technician - 1		Cell Phone: 678-595-8650	Yes	Yes	
	d Team Member - B		Cell Phone: 678-907-4281	Yes	Yes	
		VISITORS				
			· · · · · · · · · · · · · · · · · · ·			
	NT LIST:	-	·····			
OUIPME						
EQUIPME	honstadt Arabar DD	A with GPS and Armed Bline				
	honstedt, Archer PD	A with GPS and Arcpad, Rhinos.				

prepared to demob tomorrow. The remaining team members will stay for two additional days of QR only.

All other site details recorded in PDA/Logbook									
ACTIVITIES SCHEDULED FOR NEXT WORK DAY:									
Brian and Erich will demobilize t Beach.	tomorrow. The remain	ning team members will conduct QR on the north side of	Culebra near Resaca Beach and Brava						
REQUEST FOR PROJECT A	CTION:		······						
ACCIDENTS REPORTED TODAY: ACCIDENTS TO DATE:	<u>0</u>	Prepared By Field Team Le	ader: Nancy Heflin						

September 2007 Contract W912DY-04-D-0005

.

DAILY CONTRACTOR QUALITY CONTROL REPORT

Contract Number:W912DY-04-D-0005Delivery Order Number:0008Project Name:MMRP FUDS SIProject Number:744647-17000Site Location:Culebra, PRDate:4-Nov-06

Activities Conducted:

QR in areas 11, 10, and 9 and collected soil sample CUL-11-SS-06-03.

Work Planned for Tomorrow

QR in areas of Resaca and Brava Beaches, also along footpath to beach.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C):	Cond (µS/cm)	Turb (NTU):	pH (s.u.):
N/A				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment) N/A

> September 2007 Contract W912DY-04-D-0005

PARSONS INFRASTRUCTURE AND TECHNOLOGY GROUP, INC.

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
CUL-11-SS-06-03	Soil	0854	Metals and Expl.	11/7/2006	STL	

Comments: Please note that the Shipment Date is planned date and if shipment is not sent as planned a note will be found here to show correction.

Departures from approved SAP:

Sample will be held on ice for shipment on 11/7/06

Instructions given by government personnel:

Check all attachments:

	Field sampling forms (in separate submittal)		
	Field-generated analytical results		
	Chain-of-custody forms (in separate submittal)		
Signed by:	Nang-Up:		
Name	Nancy Heflin, FTL		
Date:	4-Nov-06		
Phone	Mobile: 303-960-8797	Office#: 678-969-2362	
Copies sen	t to:		
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)	
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)	
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)	
	Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)	
	Tammy Chang (Parsons)		

DAILY FIELD REPORT T INCORON

		AF SITE INSPECTION		
TRACT NO.	. W912DY-04-D-0005	DELIVERY ORI	ER NO.	0008
NO:	744647-17000	DATE/DAY:		5-Nov-06
NAME:	Culebra, PR	REPORT NO:		14
CE DISTRIC	CT: CESAJ	SHEET:		1
THER:	High 80s, Sunny with some clouds in the aftern	ioon.		
RK IN PROC	GRESS OR COMPLETED:		PREVIOUS	
	zation/Demobilization	C	UMULATIVE	CUMULATIVE
100	Miles Driven		370	470
2	Number of Flights/Miles Flown		4	6
2	Personnel: 2 team members demob, 2 remain	for 2 days of QR only	4	4
				-
2. Reconn	aissance Details			
20,220	Linear Feet:		232,853	253,073
0	Linear Feet visual by boat		46,198	46,198
	Discussion -			-
				-
3. MC Sa	mpling Details			-
0	Sediment and Soil Samples			32
0	Water Samples			0
4. QC Act	ivities Sediment and Soil Samples			- - 7
0	Water Samples	, <u></u>		0
5. QA Act				-
0	Sediment and Soil Samples			3
0	Water Samples			0
6. Safety A	Activities			-
-	conducted safety brief covering slips and falls, hy	dration, and sun protection.		-
				-
	PARSONS WORKFOI	ICE	On-site Yes/No	Tailgate Brief Yes/No
	- Nancy Heflin	Cell Phone: 303-960-8797	Yes	Yes
Parsons UXC	D Technician/SSHO - Rick White	Cell Phone: 506-8745940	Yes	Yes
Parsons Sam	pling Technician - Erich Stedman	Cell Phone: 678-595-8650	· No	No
Parsons Field	d Team Member - Brian Barker	Cell Phone: 678-907-4281	No	No

EQUIPMENT LIST:

Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos.

ADDITIONAL INFORMATION:

QR was conducted on the path to the beach and on Resaca and Brava Beaches. Brian and Erich demobilized back to Atlanta.

All other site details recorded in PDA/Logbook

VISITORS

ACTIVITIES SCHEDULED FOR NEXT WORK DAY:

The field team will conduct additional QR around Brava Beach and along Flamenco Beach where QR was not collected previously. The field team will tryto fill in any data gaps in QR in accessible areas. The field team will also inventory all gear in preparation of demob. **REQUEST FOR PROJECT ACTION:**

ACCIDENTS REPORTED TODAY:	0	
ACCIDENTS TO DATE:	0	Prepared By Field Team Leader:

Nancy Heflin

DAILY CONTRACTOR QUALITY CONTROL REPORT

Contract Number:	W912DY-04-D-0005
Delivery Order Number:	_0008
Project Name:	MMRP FUDS SI
Project Number:	744647-17000
Site Location:	Culebra, PR
<u>Date:</u>	5-Nov-06

Activities Conducted:

QR on Resaca and Brava Beaches.

Work Planned for Tomorrow The field team will conduct additional QR around Brava Beach and along Flamenco Beach where QR was not collected previously. The field team will try to fill in any data gaps in QR in accessible areas.

Field Instrument Measurements (list or provide attachment):

Water Sampling Location:	Temp (°C):	Cond (µS/cm)	Turb (NTU):	pH (s.u.):
N/A				

Comments: No water samples were collected today.

Equipment Calibrations (list or provide attachment)

N/A

PARSONS INFRASTRUCTURE AND TECHNOLOGY GROUP, INC.

List all field and quality control samples collected (list or provide attachment):

Sample ID	Media	Time	Analysis	Shipment Date	Lab	Comments
NA				1		

Comments: Ice was added to the cooler with samples collected on Friday and Saturday. Final shipment will be sent on 11/7/2006.

Departures from approved SAP:

Samples have been maintained on ice for shipment on 11/7/06

Instructions given by government personnel:

Field sampling forms (in separate submittal)

Field-generated analytical results

Chain-of-custody forms (in separate submittal)

Signed by:

Name up

Name	Nancy Heflin, FTL 5-Nov-06					
Date:						
Phone	Mobile: 303-960-8797	Office#: 678-969-2362				
Copies sen	nt to:					
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)				
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)				
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)				

Laura Kelley (Parsons DPM) Jose Mendez (CESAJ PM)

Tammy Chang (Parsons)

DAILY FIELD REPORT MMRP SITE INSPECTION

NAME: Culcbra, PR REPORT NO: 15 CE DISTRICT: CESAJ SHEET: 1		Culebra, PR			6-Nov-06	
E2 DISTRICT: CESAJ SHEET: 1 THER: High 80s, Parity Cloudy PREVIOUS 1 KIN PROGRESS OR COMPLETED: PREVIOUS CUMULATIVE CUMULA	CE DISTRICT		DEDOOT NO.		and the second s	
THER: High 80s, Partly Cloudy KIN PROGRESS OR COMPLETED: PREVIOUS 1. Mobilization/Demobilization CUMULATIVE 40 <i>Mills Driven</i> 6 6 0 Namber of Flight/Miles Flown 6 6 0 Personnel: 2 2 2. Reconnalissance Details 2 2 2 16,780 Linear Feet: 253,073 269,853 0 Execution 46,198 46,198 0 Sectiment and Soil Samples 32 9 0 Sectiment and Soil Samples 9 9						
KIN PROGRESS OR COMPLETED: PREVIOUS CUMULATIVE CUMULATIVE 40 Prize Driven 40 P	THER:		SHEET:]	
1. Mobilization/Demobilization CUMULATIVE CUMULATIVE 40 Miles Driven 470 510 0 Namber of Flights/Miles Flown 6 6 0 Personnel: 2 2 2. Reconnalissance Details 2 2 2 16,780 Linear Feet visual by boat 46,198 46,198 46,198 0 Statistics 32 0 32 0 10. MC Sampling Details 32 0 0 0 0 0 Statistics 7 0 0 0 0 4. QC Activities 0		High 80s, Partly Cloudy				
40 Miles Diven 40 510 0 Number of Flights/Miles Flown 6 6 0 Personnel: 2 2 2. 2 2 2 2. 2 2 2 2. 2 2 2 2. 2 2 2 2. 2 2 2 2. 2 2 2 2. 2 2 2 3. Mc Sampling Details 2 31 0 Stediment and Soll Samples 32 0 0 Water Samples 0 0 4. QC Activifies 0 0 0 0 Stediment and Soll Samples 7 0 0 Stediment and Soll Samples 3 0 0 Stediment and Soll Samples 1 0				PREVIOUS		
0 Number of Flights/Miles Flown 6 6 0 Personnel: 2 2 2. Reconnalssance Details 253,073 269,853 16,780 Linear Feet's wall by boat 46,198 46,198 Discussion - 46,198 46,198 46,198 Discussion - - - - 3. MC Sampling Details 0 32 0 0 Stediment and Soll Samples 32 0 0 Stediment and Soll Samples 0 0 - - - - - 0 Stediment and Soll Samples 0 0 - 0 St	1. Mobiliza	tion/Demobilization	C	UMULATIVE		
0 Personnel: 2 2 2. Reconnaissance Details 253,073 269,853 0 Linear Feet: Visual by boat 46,198 46,198 0 Linear Feet: Visual by boat 46,198 46,198 0 Discussion - 31 46,198 46,198 0 Steament and Soil Samples 32 0 0 3. MC Sampling Details 0 0 0 4. QC Activities 0 0 0 0 Stediment and Soil Samples 7 0 4. QC Activities 0 0 0 5. QA Activities 0 0 0 5. QA Activities 0 0 0 6. Safety Activities 0 0 0 Parsons VORKFORCE On-site Yes/No Parsons VLO Technician/Shito – Rick White Cell Phone: 303-960-8797 Yes Yes Parsons Suppling Technician – Erich Stedman Cell Phone: 678-595-8650 No No Parsons Suppling Technician – Erich Stedman Cell Phone: 678-597-5281 No No <td colspan<="" td=""><td>40</td><td></td><td></td><td></td><td></td></td>	<td>40</td> <td></td> <td></td> <td></td> <td></td>	40				
2. Reconnaissance Details 2. Reconnaissance Details 2. Reconnaissance Details 2. Solution Feet: 2. 253,073 2. 269,854 2. 261,854 2.	0	Number of Flights/Miles Flown				
16,780 Linear Feet: 25,073 269,853 0 Linear Feet visual by boat 46,198 46,198 Discussion - 46,198 46,198 3. MC Sampling Details 32 0 Sediment and Soil Samples 32 0 Water Samples 0 4. QC Activifies 7 0 0 Sediment and Soil Samples 7 0 Sediment and Soil Samples 0	0	Personnel:		2	2	
16,780 Linear Feet: 25,073 269,853 0 Linear Feet visual by boat 46,198 46,198 Discussion - 46,198 46,198 3. MC Sampling Details 32 0 Sediment and Soil Samples 32 0 Water Samples 0 4. QC Activifies 7 0 0 Sediment and Soil Samples 7 0 Sediment and Soil Samples 0	2. Reconnai	ssance Details			•	
0 Linear Feet visual by boat 46,198 46,198 Discussion -				253.073	269,853	
Discussion - 3. MC Sampling Details 0 Sediment and Soil Samples 0 Water Samples 0 Sediment and Soil Samples 0 Water Samples 0 Sediment and Soil Samples 10 Sediment and Soil Samples 11 Sediment and Soil Samples 12	,					
0 Sediment and Soil Samples 32 0 Water Samples 0 4. QC Activities 7 0 0 Sediment and Soil Samples 7 0 Water Samples 0 5. QA Activities 0 0 6 Sediment and Soil Samples 0 0 Water Samples 0 0 Water Samples 0 0 Water Samples 0 0 Sediment and Soil Samples 0 0 Sediment and Soil Samples 0 0 Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-81745940 Yes Parsons Fild Team Member - Brian Barker Cell P						
0 Sediment and Soil Samples 32 0 Water Samples 0 4. QC Activities 7 0 0 Sediment and Soil Samples 7 0 Water Samples 0 5. QA Activities 0 0 6 Sediment and Soil Samples 0 0 Water Samples 0 0 Water Samples 0 0 Water Samples 0 0 Parsons UXO Technician/SSHO - Rick White Cell Phone: 303-960-8797 Yes Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-997-4281 <t< td=""><td>•</td><td></td><td></td><td></td><td>•</td></t<>	•				•	
0 Sediment and Soil Samples 32 0 Water Samples 0 4. QC Activities 7 0 0 Sediment and Soil Samples 7 0 Water Samples 0 5. QA Activities 3 0 6 Sediment and Soil Samples 3 0 Sediment and Soil Samples 0 5. QA Activities 3 0 6. Safety Activities 9 0 6. Safety Activities 0 0 6. Safety Activities 9 0 9 Seconducted safety brief covering insect bites and stings. 10 9 Parsons UXO Technician/SSHO - Rick White Cell Phone: 303-960-8797 Yes 9 Yes Yes Yes 9 Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes 9 Yes Yes Yes 9 O No No 9 Parsons Side Technician - Erich Stedman Cell Phone: 678-593-8650 No 9 No No No No	1 MC Sam	nling Dotails			•	
0 Water Samples 0 4. QC Activifies 7 0 Sediment and Soil Samples 7 0 Water Samples 0 5. QA Activifies 3 0 0 Sediment and Soil Samples 3 0 Sediment and Soil Samples 3 0 Sediment and Soil Samples 0 6. Safety Activities 0 0 Rick White conducted safety brief covering insect bites and stings. 0 Parsons FIL - Nancy Heflin Cell Phone: 303-960-8797 Yes Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No Parsons Filed Team Member - Brian Barker Cell Phone: 678-907-4281 No VISITORS					32	
4. QC ActivIfies 7 0 Sediment and Soil Samples 0 5. QA ActivIfies 3 0 Sediment and Soil Samples 3 0 Sediment and Soil Samples 0 5. QA ActivIfies 3 0 0 Sediment and Soil Samples 3 0 Sediment and Soil Samples 0 6. Safety ActivIties 0 0 Rick White conducted safety brief covering insect bites and stings. 7 Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes Parsons STL - Nancy Heflin Cell Phone: 503-960-8797 Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-959-8650 No Parsons FTL - Nancy Heflin Cell Phone: 678-959-8650 No No Parsons Field Team Member - Brian Barker Cell Phone: 678-959-8650 No No Parsons Field Team Member - Brian Barker Cell Phone: 678-957-8650 No No EQUIPMENT LIST:					0	
0 Sediment and Soil Samples 7 0 Water Samples 0 5. QA Activities 3 0 Jeediment and Soil Samples 3 0 Water Samples 0 6. Safety Activities 0 0 6. Safety Activities 7 0 Rick White conducted safety brief covering insect bites and stings. 7 0 9 PARSONS WORKFORCE On-site Tailgate Brief 9 Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes 9 Parsons UXO Technician/SSH0 - Rick White Cell Phone: 303-960-8797 Yes 9 Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No 9 Parsons Sield Team Member - Brian Barker Cell Phone: 678-907-4281 No No 9 VISITORS Image: Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. Image: Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. ADDITIONAL INFORMATION: Image: Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. Image: Schonstedt, Archer PDA with GPS and Arcpad, Rhinos.						
0 Sediment and Soil Samples 7 0 Water Samples 0 5. QA Activities 3 0 Jeediment and Soil Samples 3 0 Water Samples 0 6. Safety Activities 0 0 6. Safety Activities 7 0 Rick White conducted safety brief covering insect bites and stings. 7 0 9 PARSONS WORKFORCE On-site Tailgate Brief 9 Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes 9 Parsons UXO Technician/SSH0 - Rick White Cell Phone: 303-960-8797 Yes 9 Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No 9 Parsons Sield Team Member - Brian Barker Cell Phone: 678-907-4281 No No 9 VISITORS Image: Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. Image: Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. ADDITIONAL INFORMATION: Image: Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. Image: Schonstedt, Archer PDA with GPS and Arcpad, Rhinos.	•					
0 Water Samples 0 5. QA Activifies 3 0 Sediment and Soll Samples 3 0 Water Samples 0	4. QC Activ	ities			,	
S. QA Activities 0 Sediment and Soil Samples 0 Water Samples 0 Water Samples 6. Safety Activities Rick White conducted safety brief covering insect bites and stings. PARSONS WORKFORCE PARSONS WORKFORCE On-site Yes/No Yes/No Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes Yes Parsons UXO Technician/SSHO - Rick White Cell Phone: 678-595-8650 No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No VISITORS EQUIPMENT LIST: Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. ADDITIONAL INFORMATION:	0	Sediment and Soil Samples			7	
0 Sediment and Soil Samples 3 0 Water Samples 0 6. Safety Activities 0 Rick White conducted safety brief covering insect bites and stings. 7 PARSONS WORKFORCE On-site Yes/No Yes/No Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Parsons Suppling Technician - Erich Stedman Cell Phone: 678-995-8650 No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No VISITORS	0	Water Samples			0	
0 Water Samples 0 6. Safety Activities		• • • • • • • • • • • • • • • • • • •	······		. 3	
Rick White conducted safety brief covering insect bites and stings. PARSONS WORKFORCE On-site Yes/No Yes/No Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No No No EQUIPMENT LIST:	0	Water Samples			0	
Rick White conducted safety brief covering insect bites and stings. PARSONS WORKFORCE On-site Yes/No Yes/No Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No No No EQUIPMENT LIST:		·····				
Rick White conducted safety brief covering insect bites and stings. PARSONS WORKFORCE On-site Yes/No Tailgate Brief Yes/No Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes Yes Parsons TTL - Nancy Heflin Cell Phone: 506-8745940 Yes Yes Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No No No EQUIPMENT LIST:	,				•	
PARSONS WORKFORCE On-site Yes/No Tailgate Brief Yes/No Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes Yes Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No No No EQUIPMENT LIST:						
Yes/No Yes/No Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes Yes Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No No VISITORS	Rick White con	ducted safety brief covering insect bites and stings.				
Yes/No Yes/No Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes Yes Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No No VISITORS						
Parsons FTL - Nancy Heflin Cell Phone: 303-960-8797 Yes Yes Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No No VISITORS VISITORS EQUIPMENT LIST: Image: Comparison of the temperature of temperature of the temperature of tempe		PARSONS WORKFORCE				
Parsons UXO Technician/SSHO - Rick White Cell Phone: 506-8745940 Yes Yes Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No No VISITORS Image: Cell Phone: 678-907-4281 No No EQUIPMENT LIST: Image: Cell Phone: 678-907-4281 Image: Cell Phone: 678-907-4281 No ADDITIONAL INFORMATION: Image: Cell Phone: 678-907-4281 Image: Cell Phone: 678-907-4281 Image: Cell Phone: 678-907-4281	Parsons FTL -	Nancy Heflin Cell 1	Phone: 303-960-8797			
Parsons Sampling Technician - Erich Stedman Cell Phone: 678-595-8650 No No Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No No VISITORS VISITORS Image: Cell Phone: 678-907-4281 No No EQUIPMENT LIST: Image: Cell Phone: 678-907-4281 Image: Cell Phone: 678-90						
Parsons Field Team Member - Brian Barker Cell Phone: 678-907-4281 No No VISITORS EQUIPMENT LIST: Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. ADDITIONAL INFORMATION:			and the second se			
EQUIPMENT LIST: Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. ADDITIONAL INFORMATION:		Feam Member - Brian Barker Cell 1		No	No	
EQUIPMENT LIST: Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. ADDITIONAL INFORMATION:		VISITORS				
Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. ADDITIONAL INFORMATION:						
Minelab, Schonstedt, Archer PDA with GPS and Arcpad, Rhinos. ADDITIONAL INFORMATION:	EQUIPMENT	LIST:				
ADDITIONAL INFORMATION:						
	Minelab, Schor	istedt, Archer PDA with GPS and Arcpad, Rhinos.				
	ADDITIONAL	L INFORMATION:				
	0.0					

All other site details recorded in PDA/Logbook					
ACTIVITIES SCHEDULED FOR NEXT WORK DAY:					
Nancy and Rick will demobilize on Tuesday Nov 7th.					
REQUEST FOR PROJECT ACTION:					
ACCIDENTS REPORTED TODAY: 0 ACCIDENTS TO DATE: 0	Prepared By Field Team Leader:	Nancy Heflin			
Check all attachments:					
Field sampling forms (in separate submitta					

,

.

PARSONS INFRASTRUCTURE AND TECHNOLOGY GROUP, INC.

Field-generated analytical results

Chain-of-custody forms (in separate submittal)

Signed by:

Name UK

ame	Nancy Heflin, FTL				
Date:	6-Nov-06				
hone	Mobile: 303-960-8797 Office#: 678-969-2362				
opies se	at to:				
	Deborah Walker (MM CX)	Chris Cochrane (MM DC PM)			
	Heidi Novotny (HTRW CX)	Becky Terry (USAESCH)			
	Don Silkebakken (Parsons PM)	Teresa Carpenter (USAESCH)			
	Laura Kelley (Parsons DPM)	Jose Mendez (CESAJ PM)			
	Tammy Chang (Parsons)				

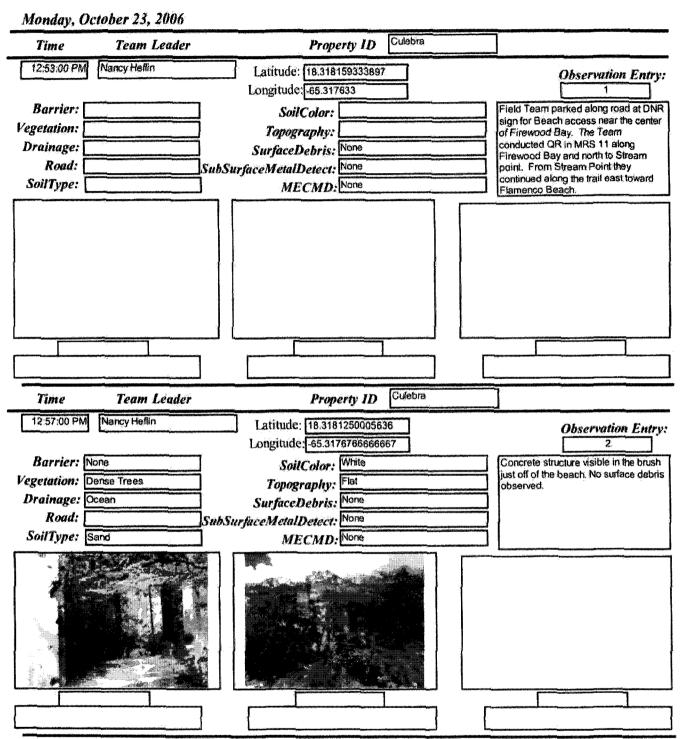
,

•

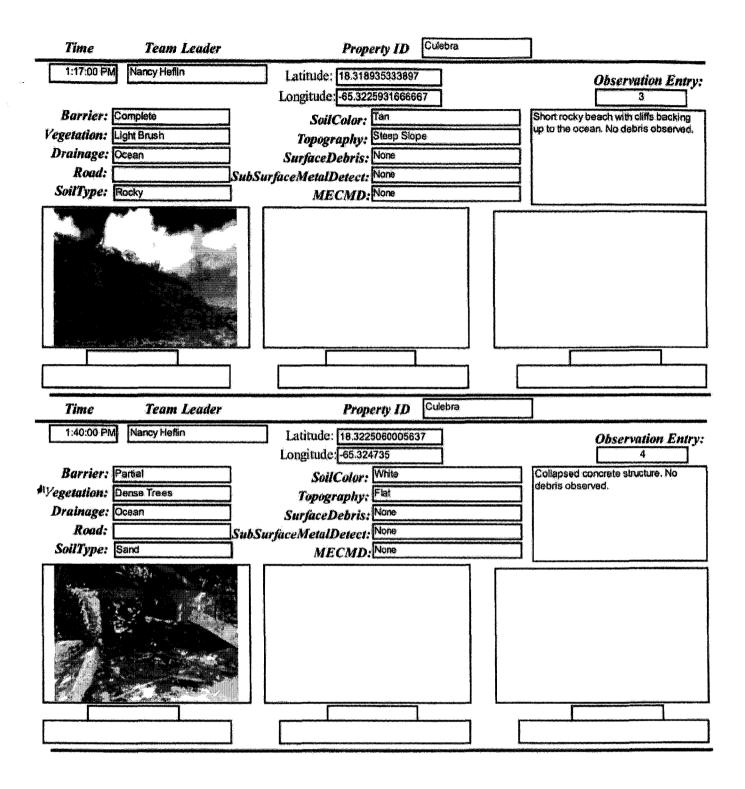
APPENDIX E

PHOTOGRAPH DOCUMENTATION

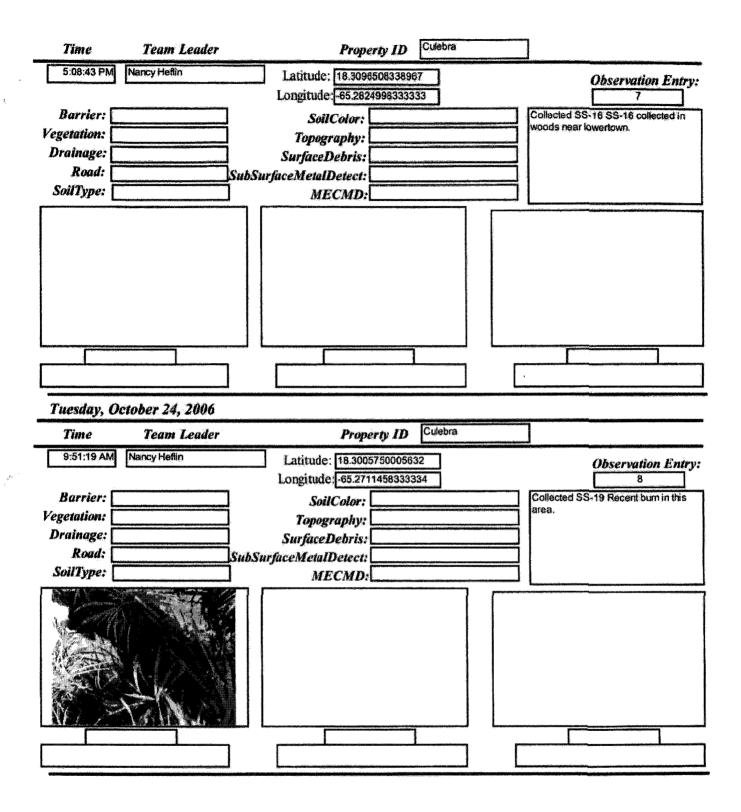
.

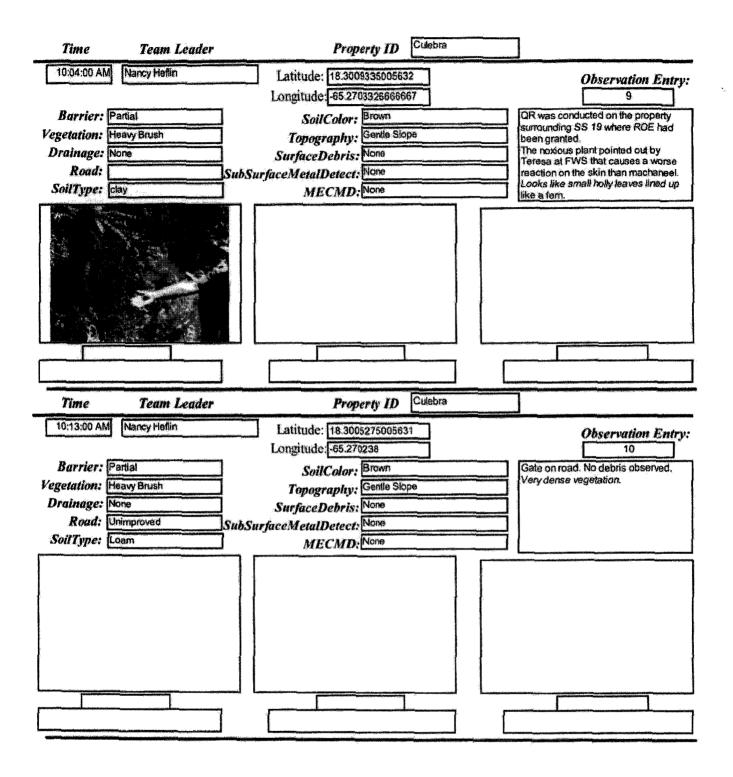

.

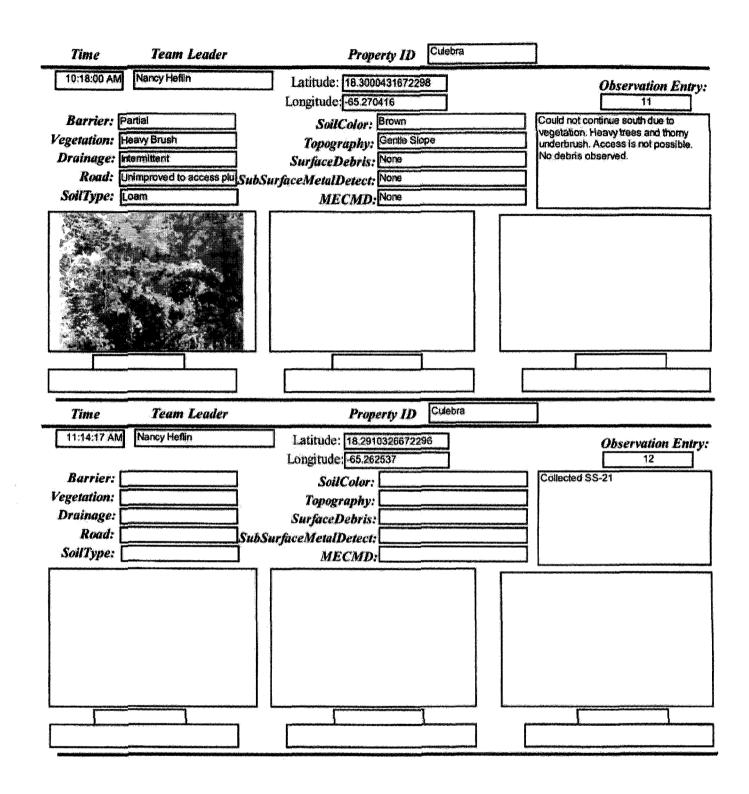
•

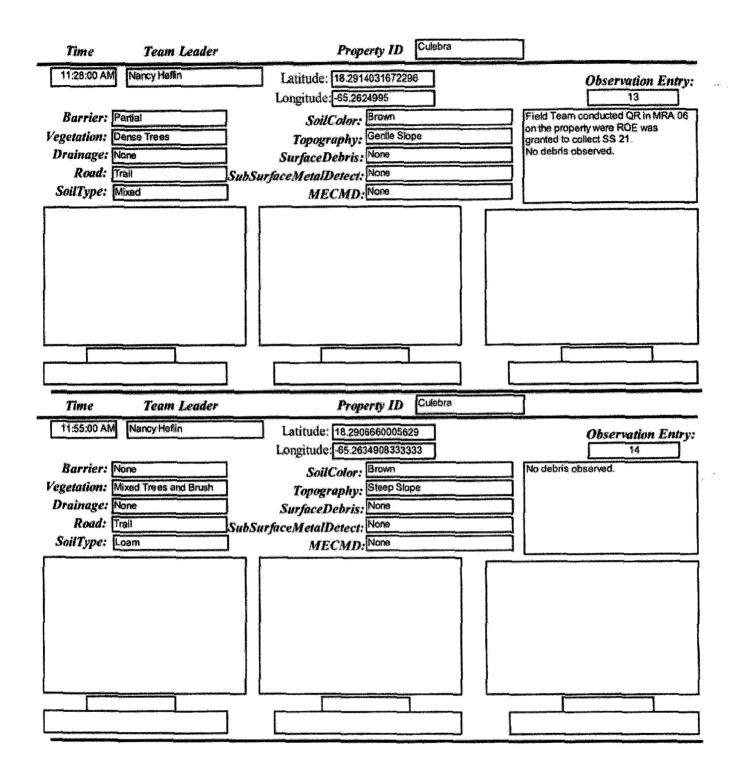

.

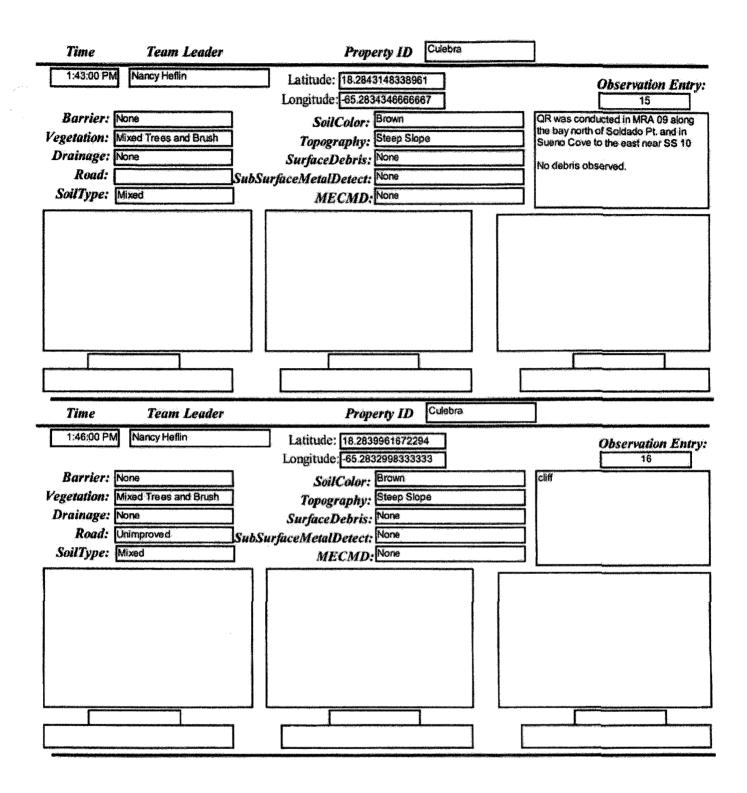
.

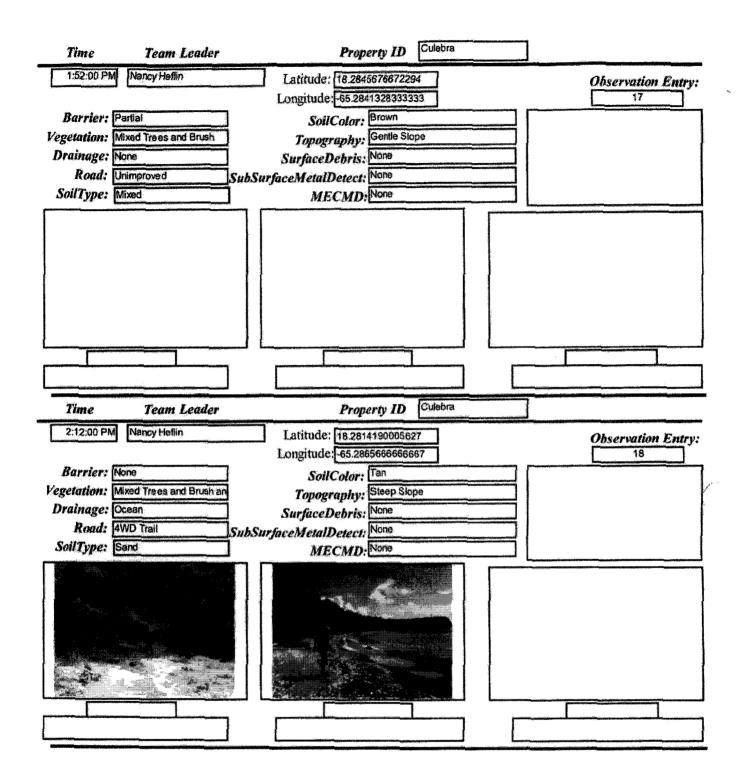

.

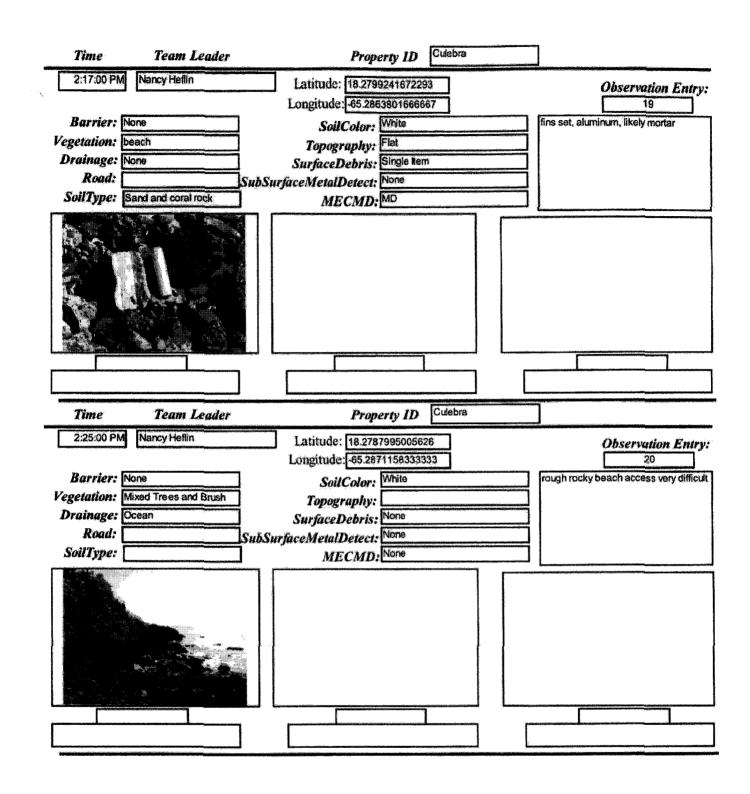


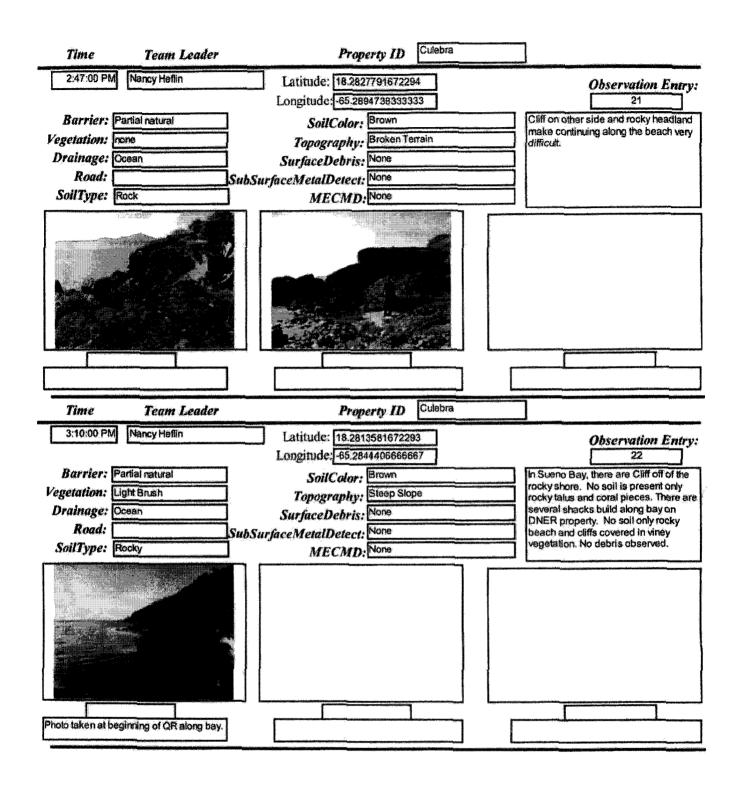

Field Team Leader's Site Observations

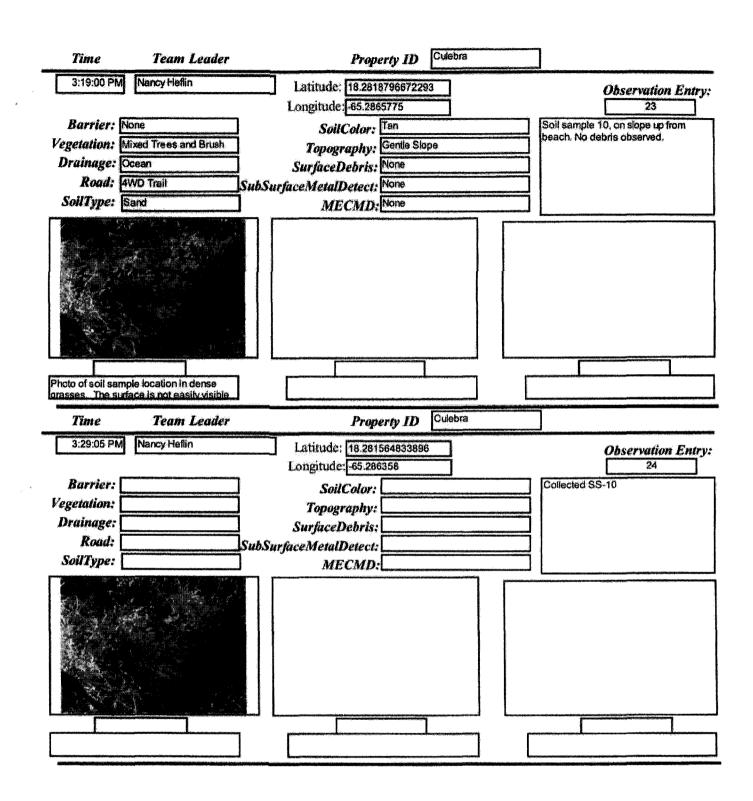


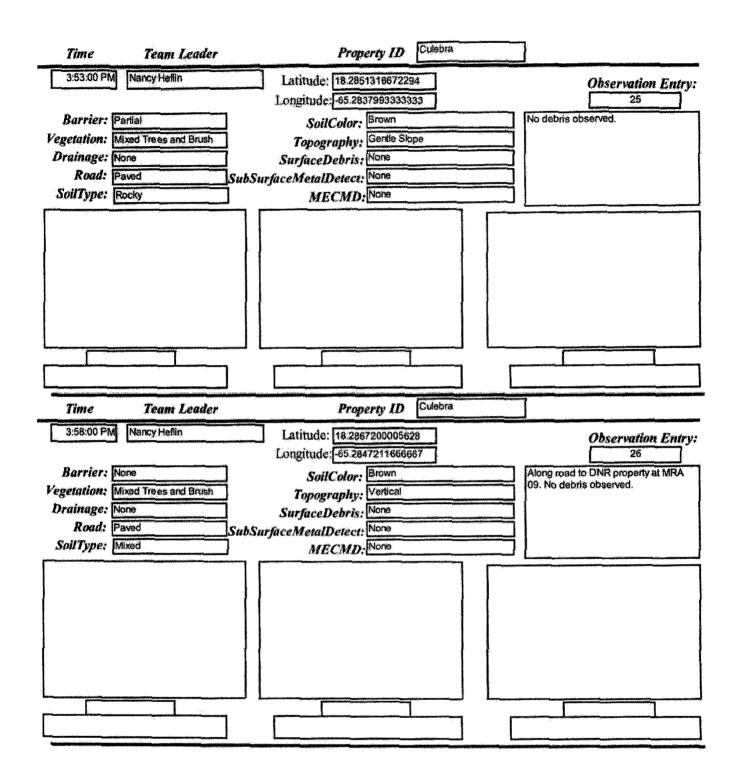


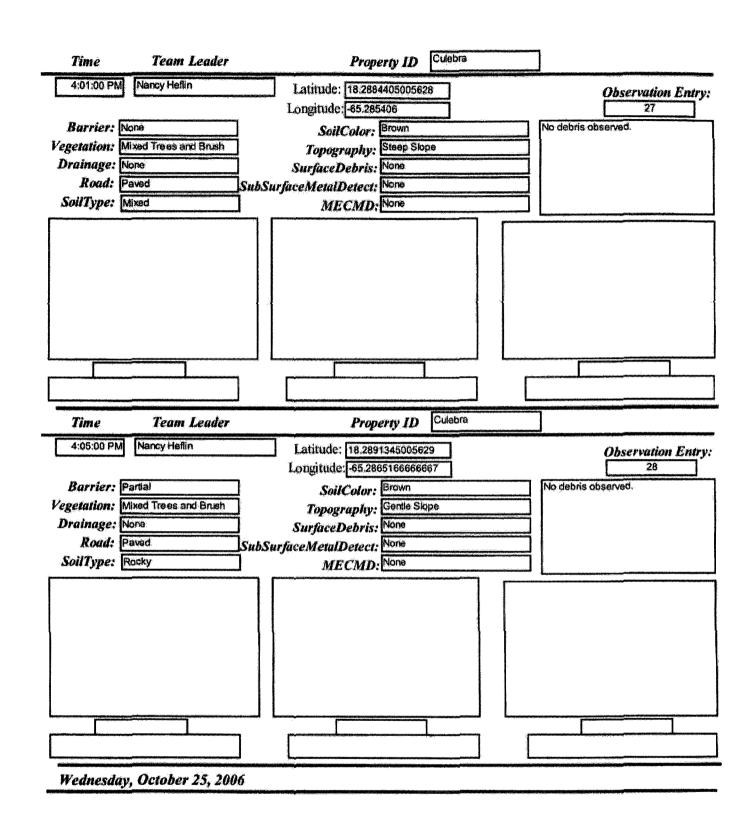


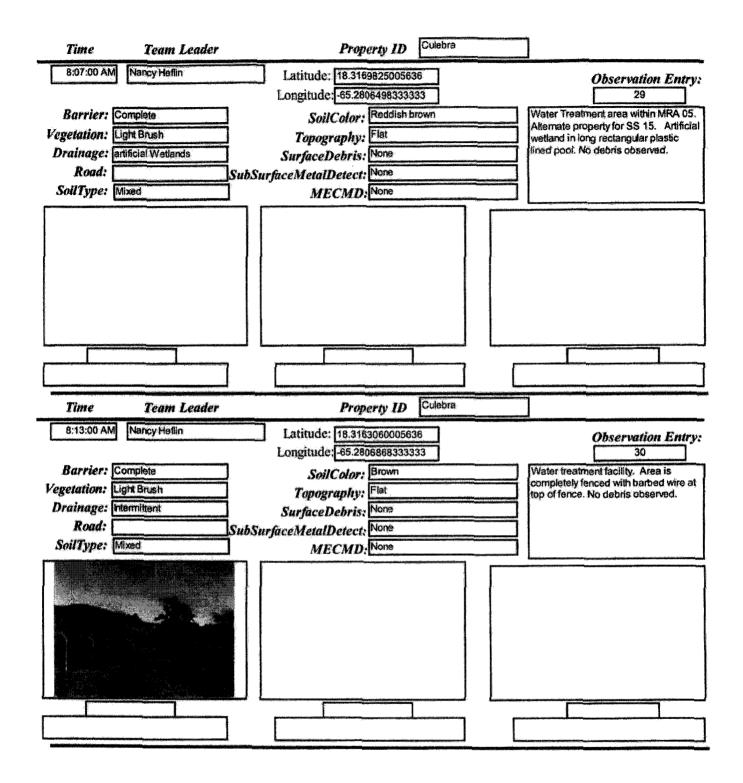


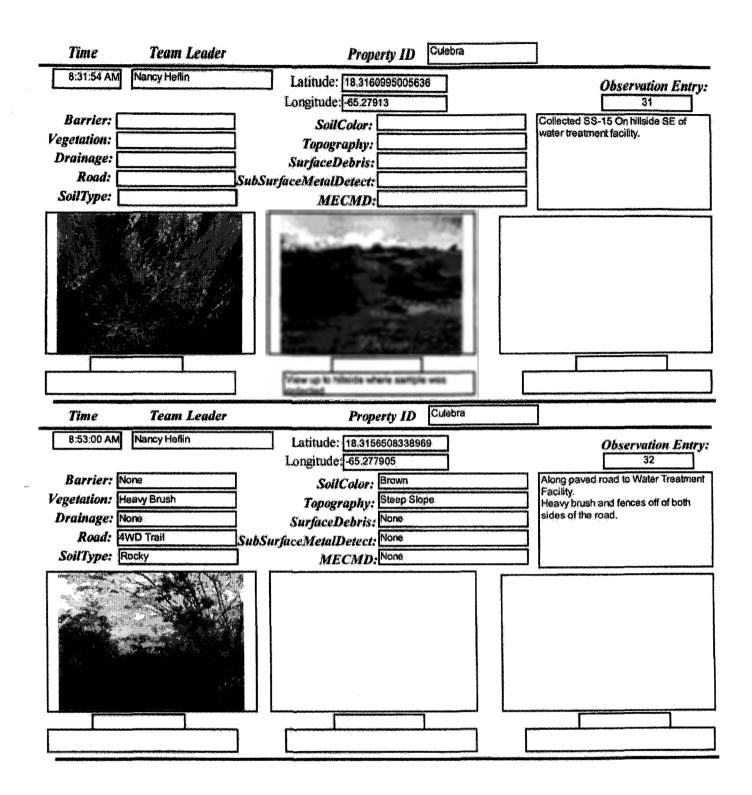


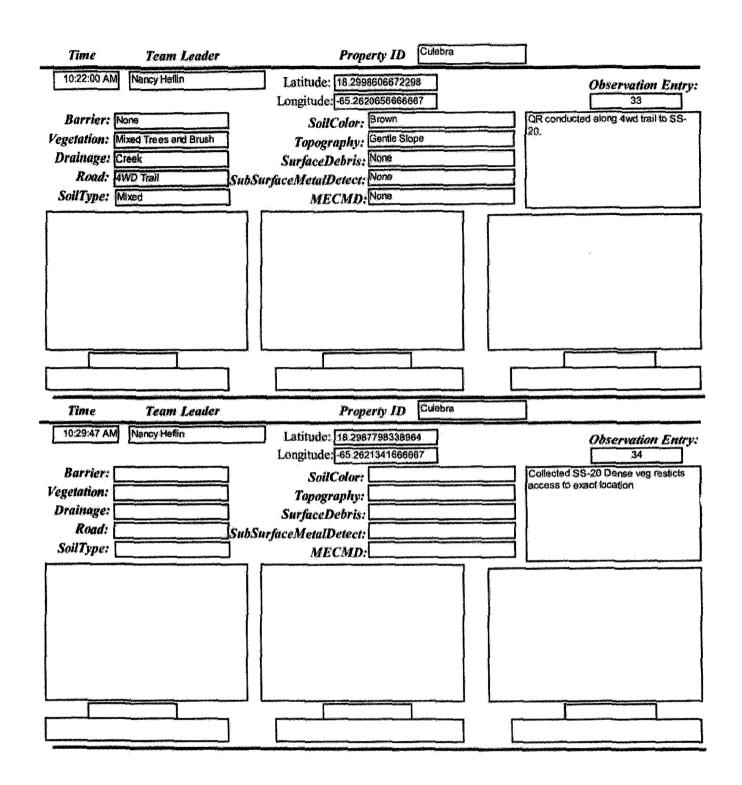


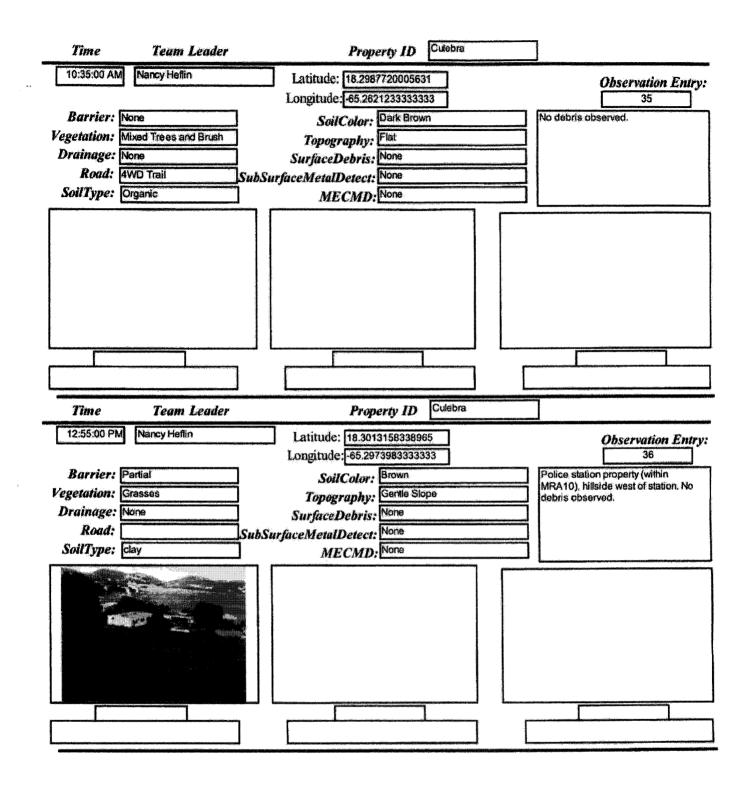


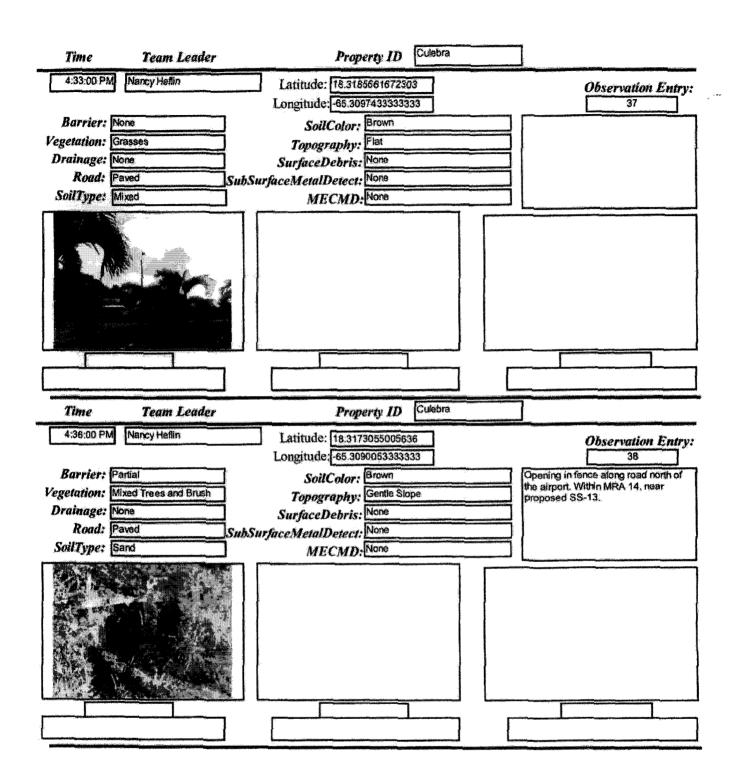

Γ.

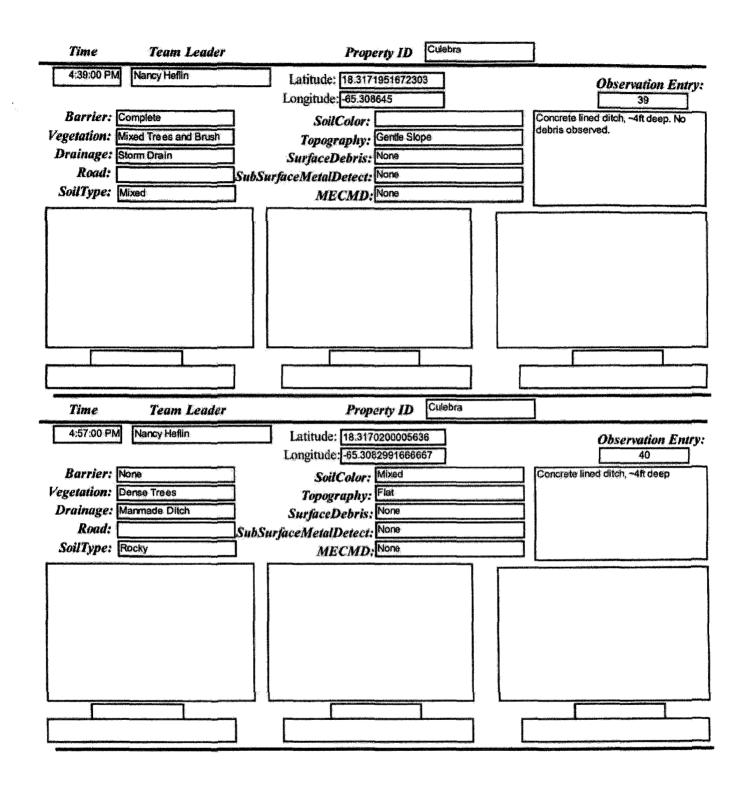


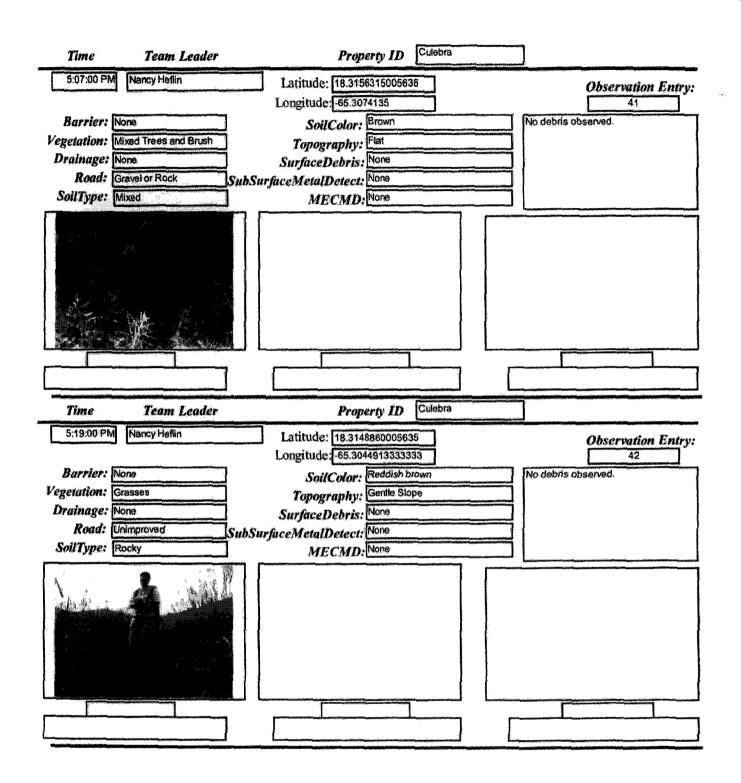


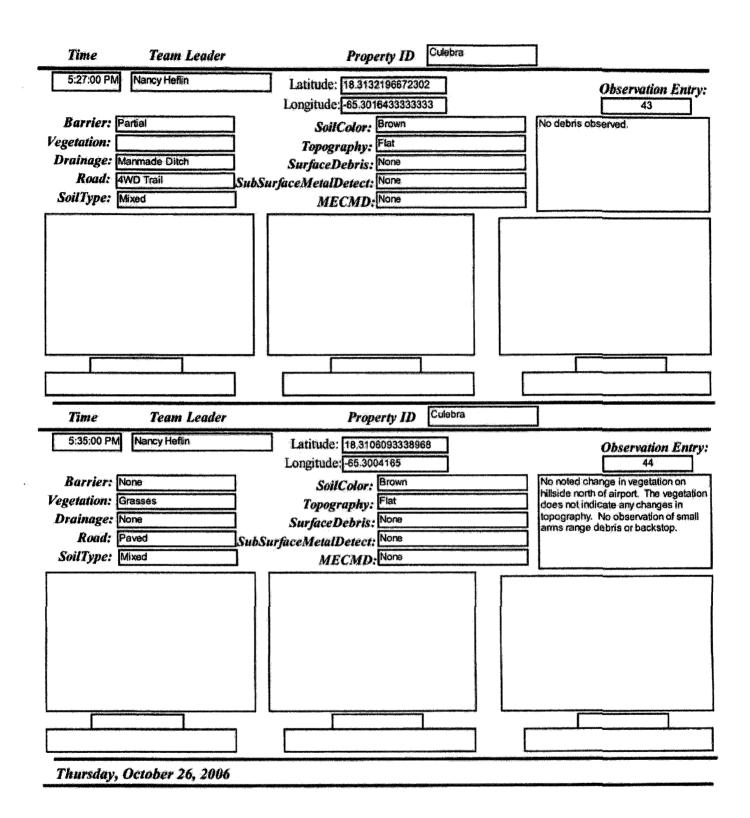


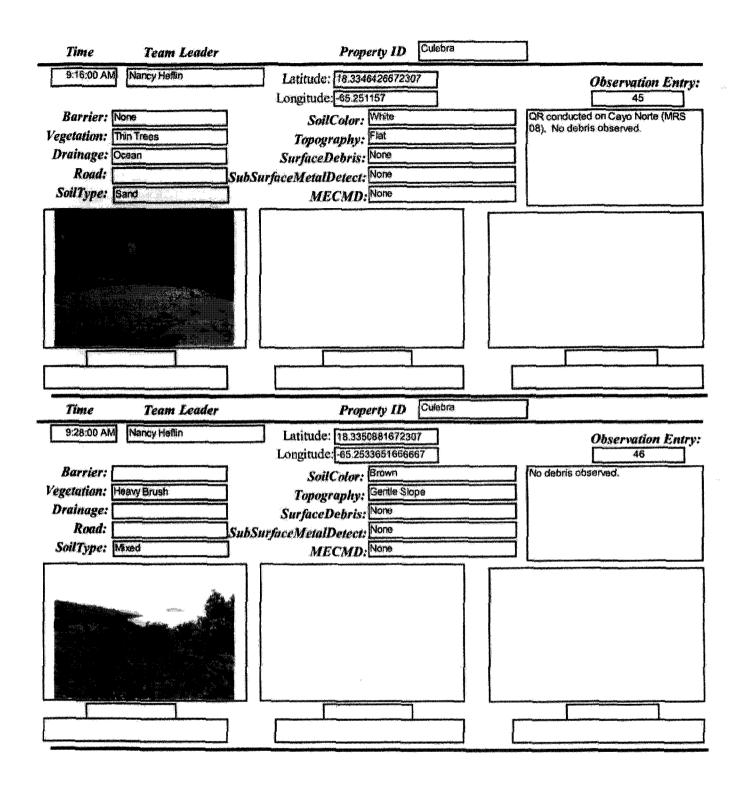


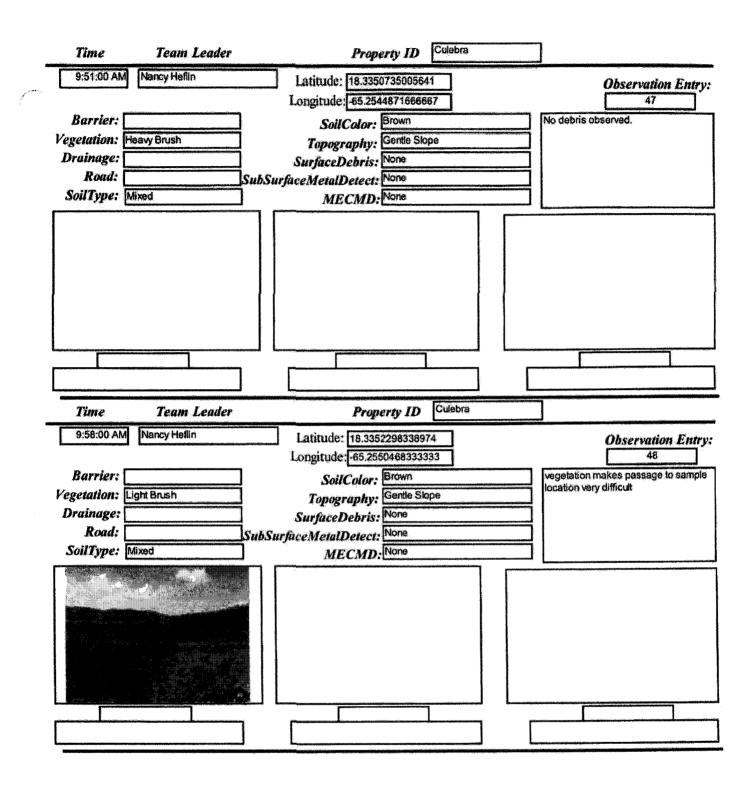


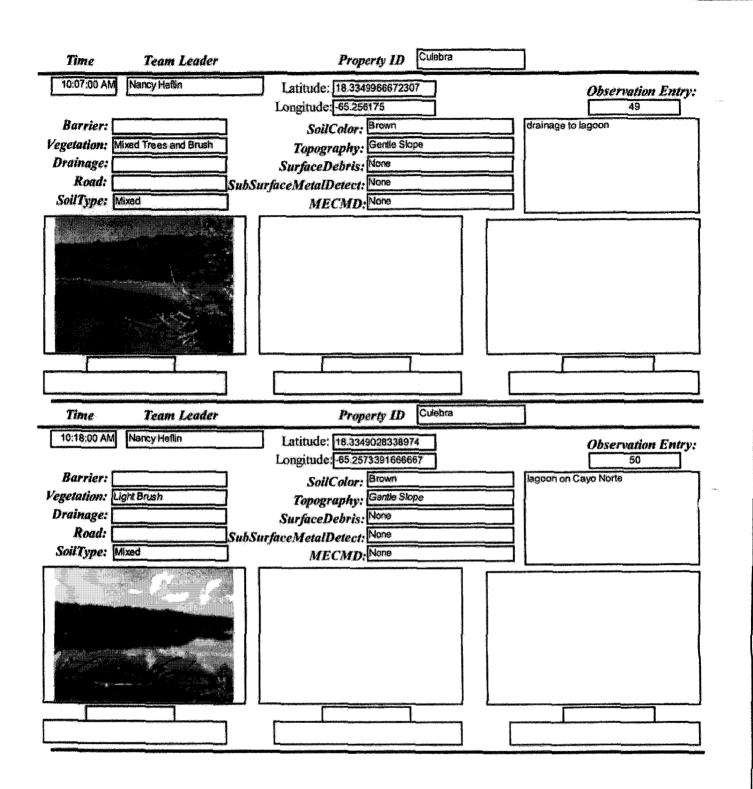


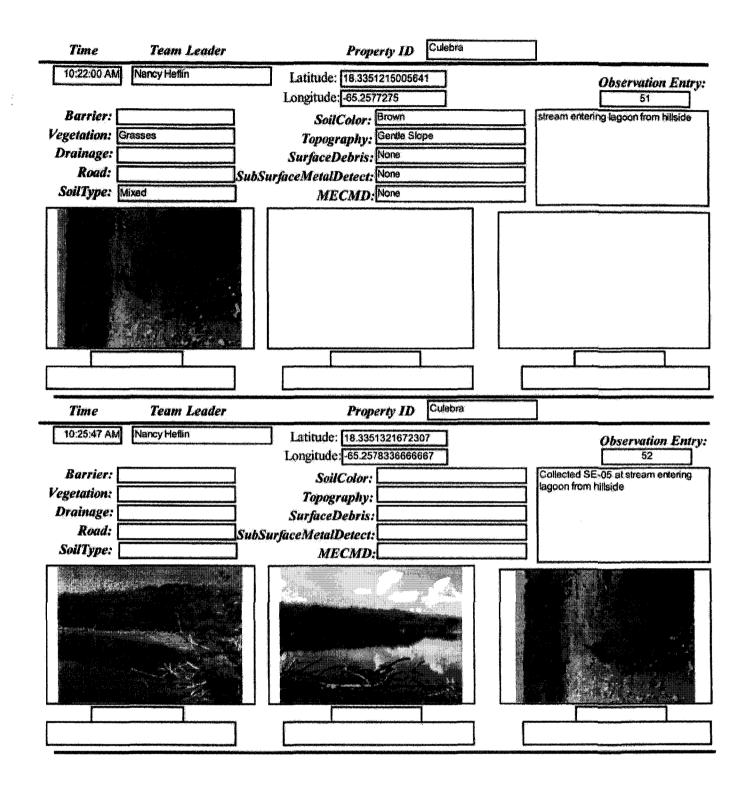


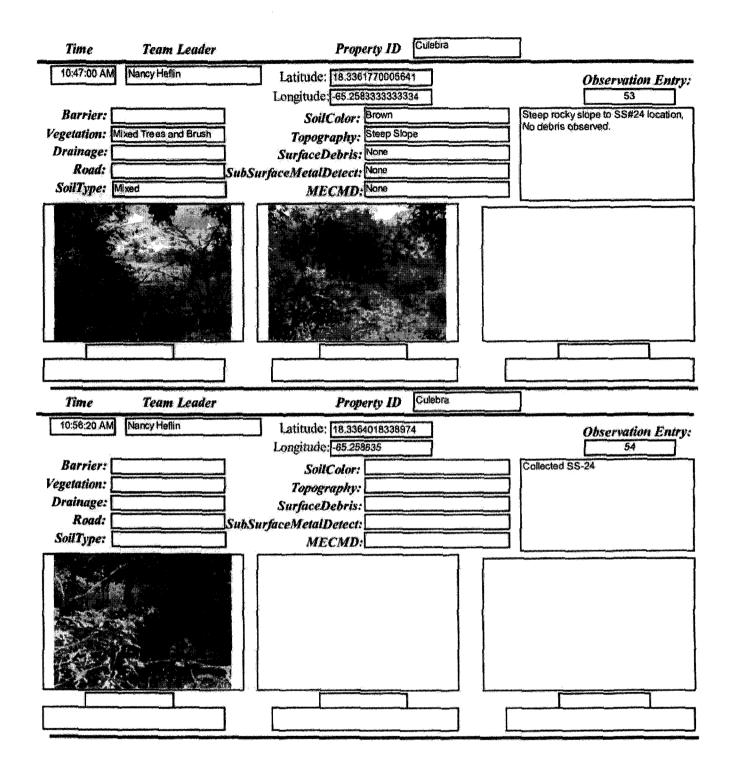


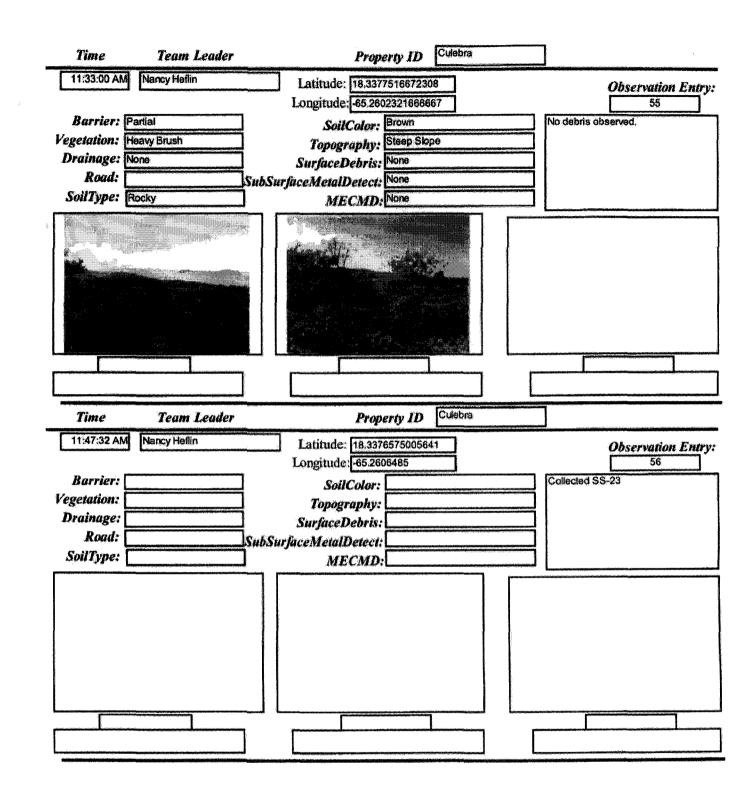


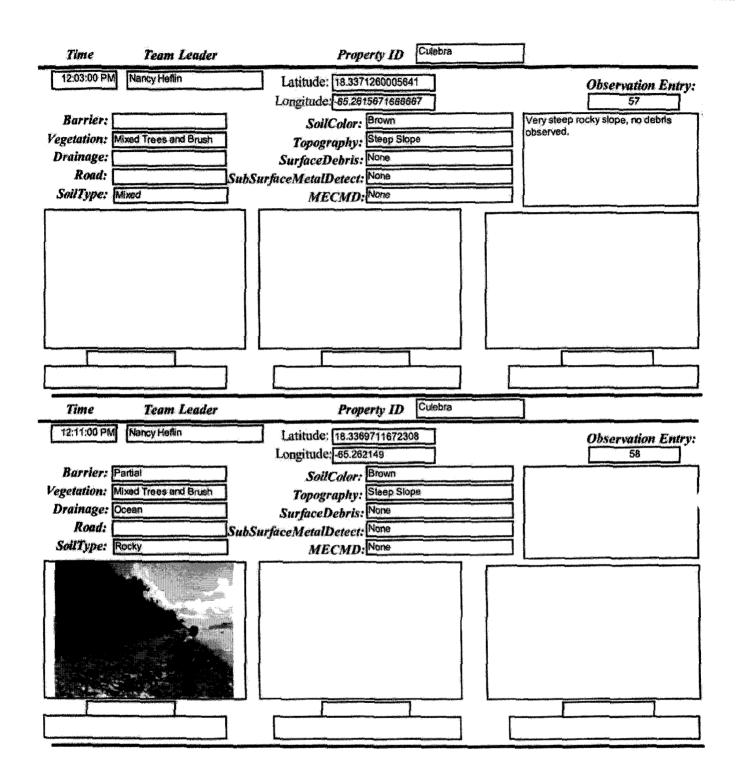


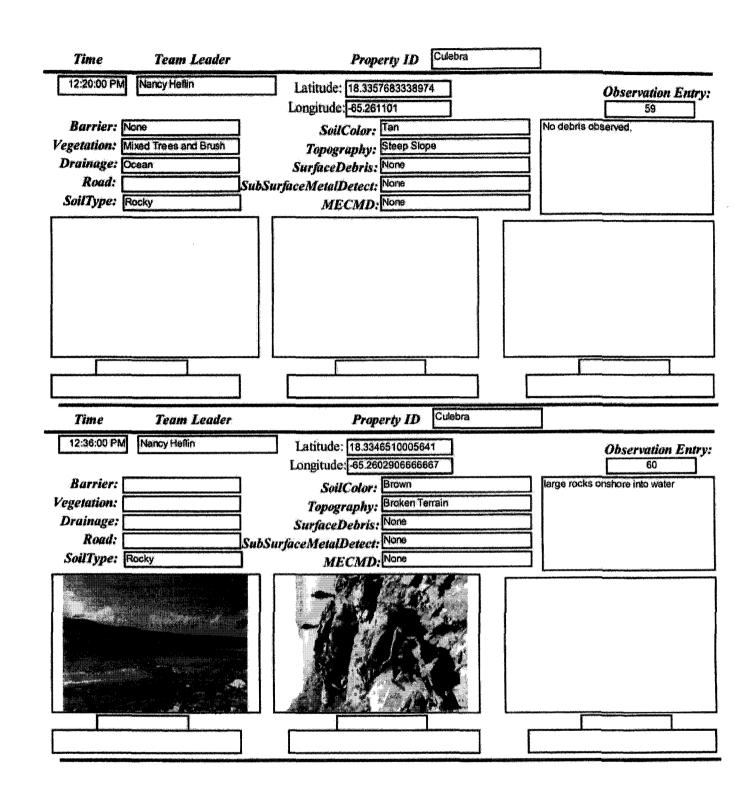


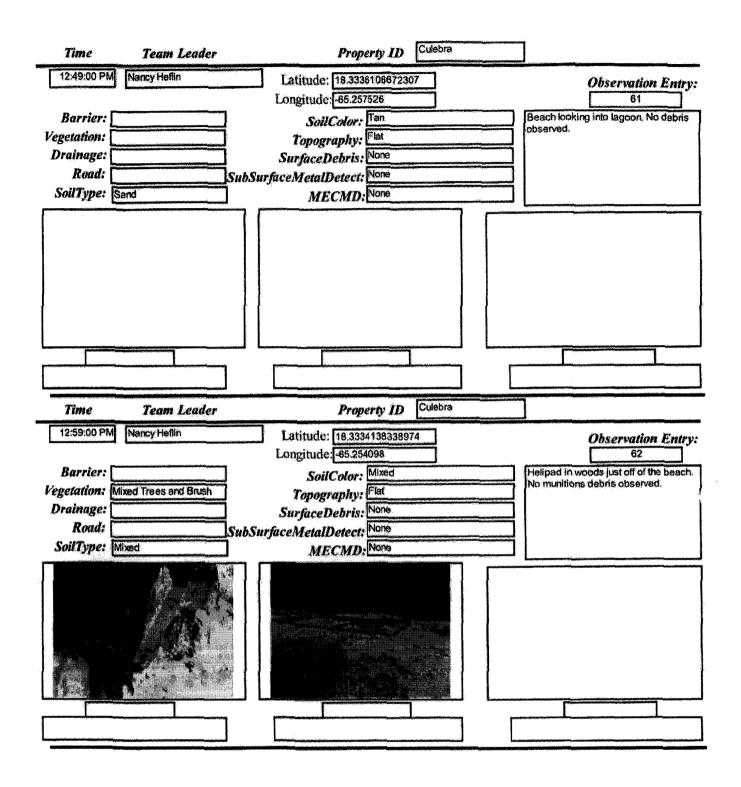


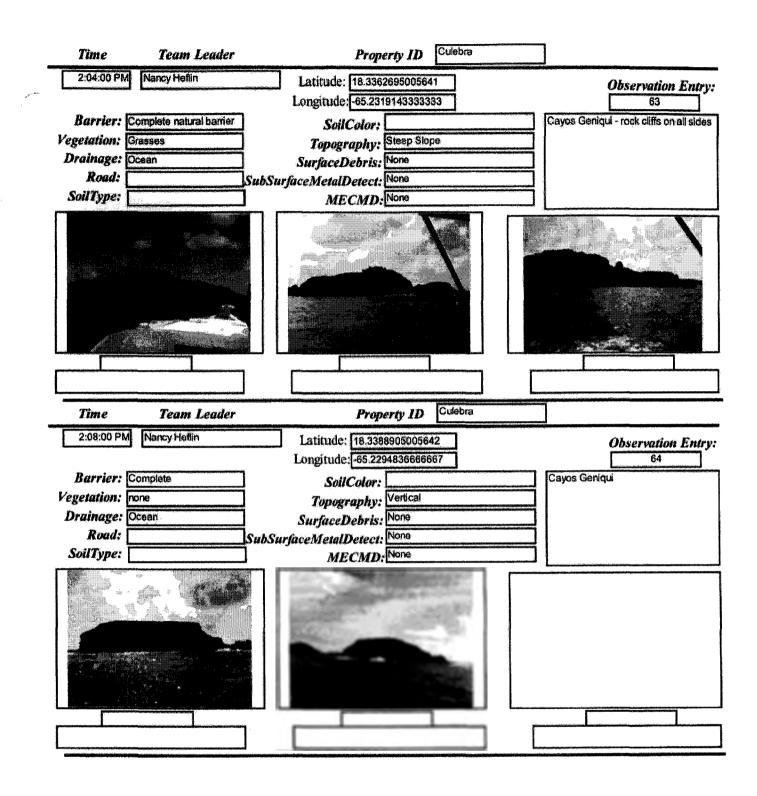


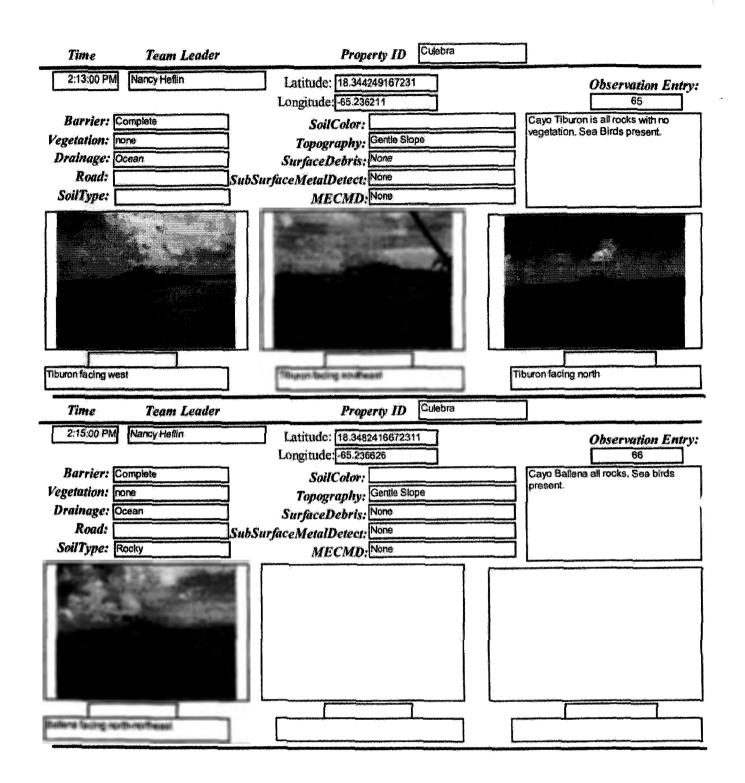


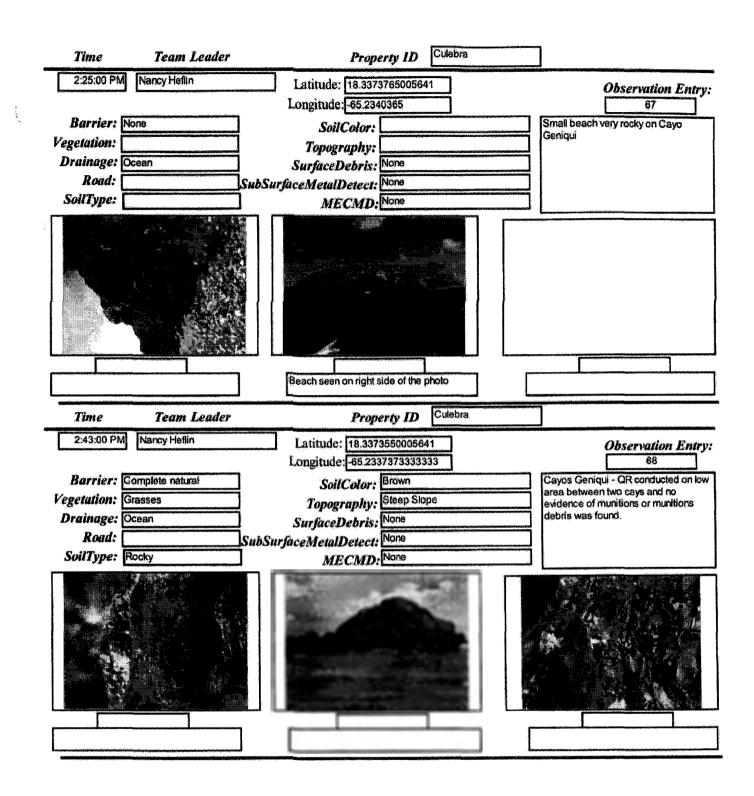


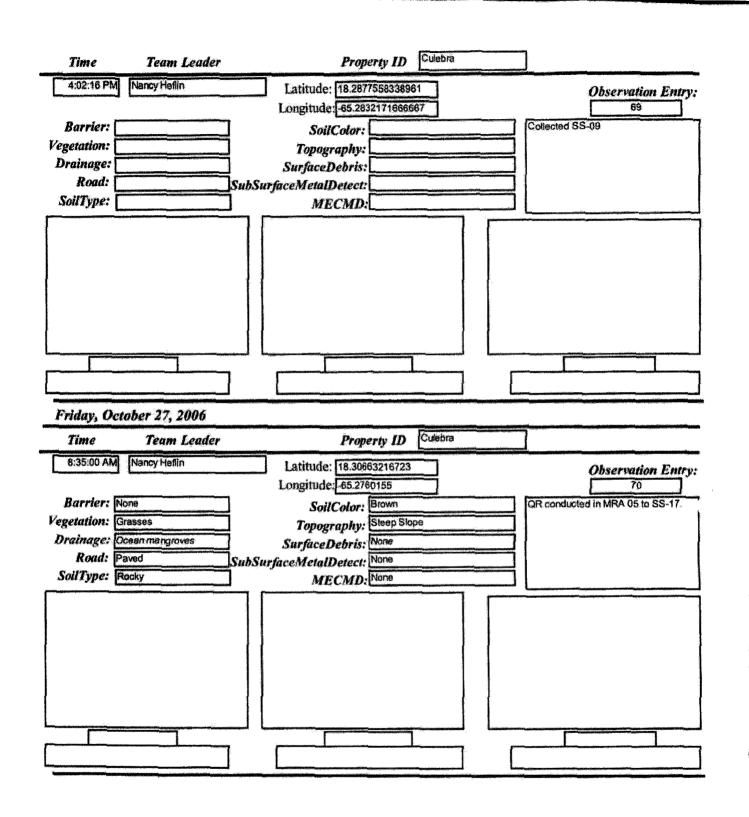


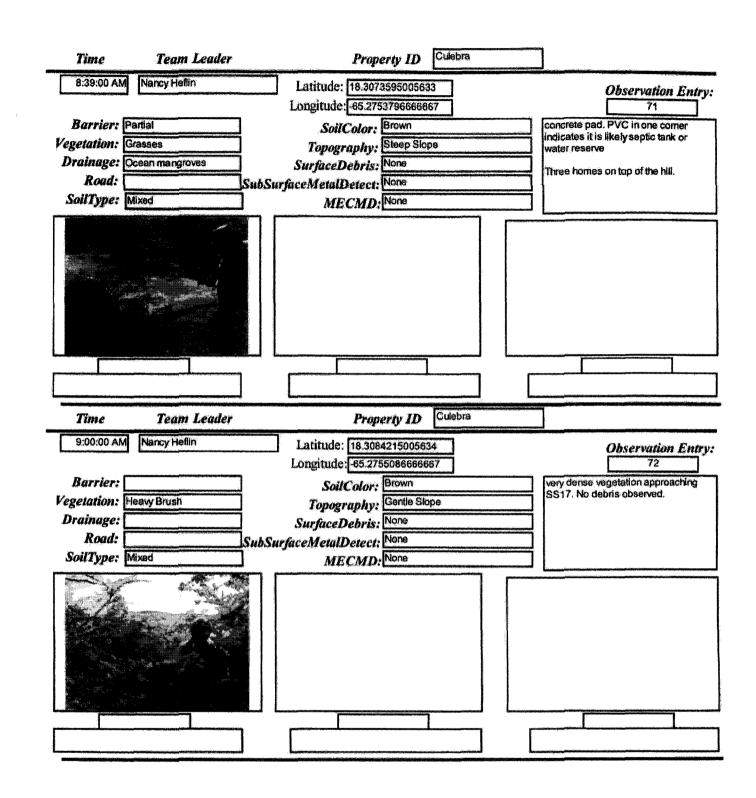


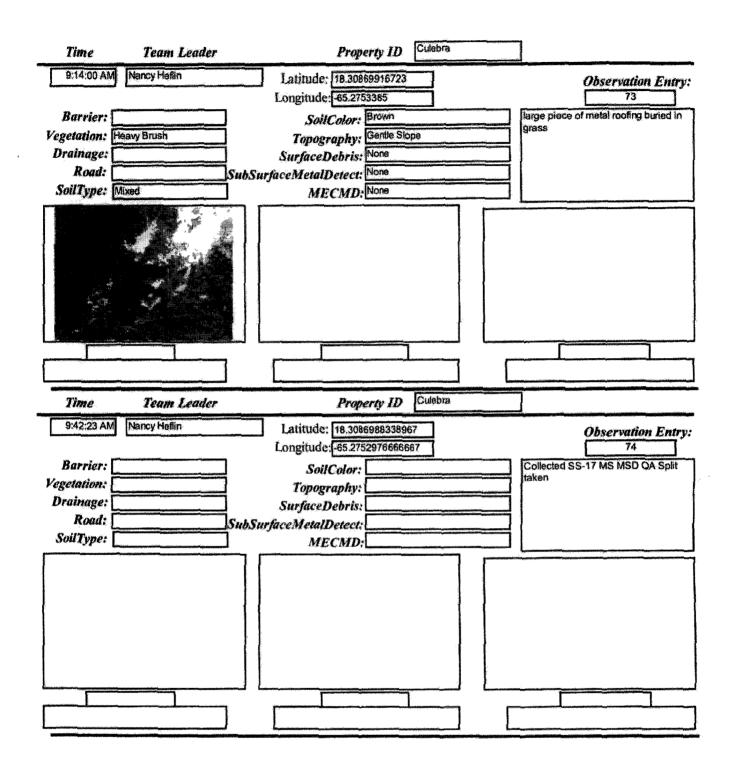


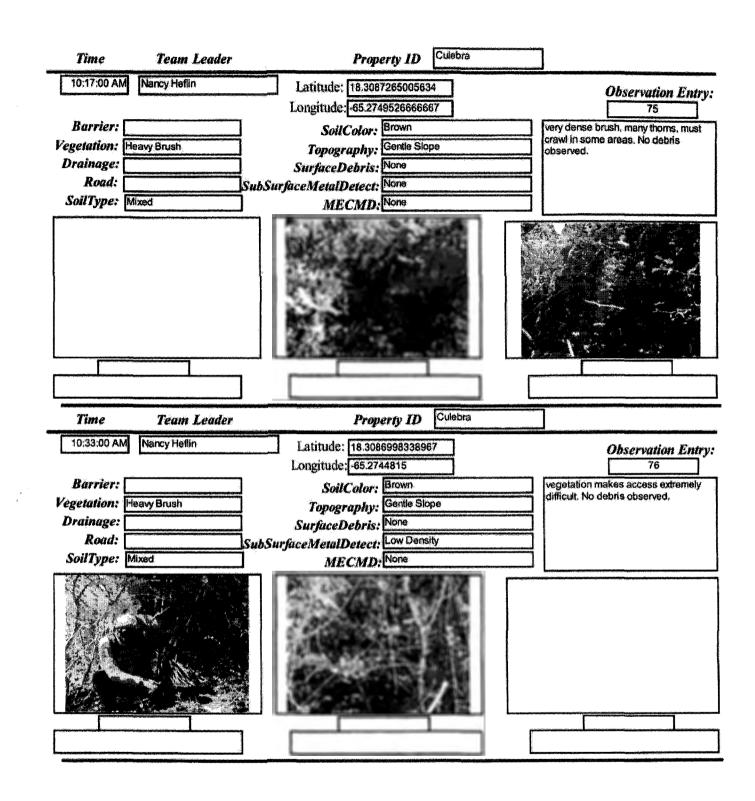


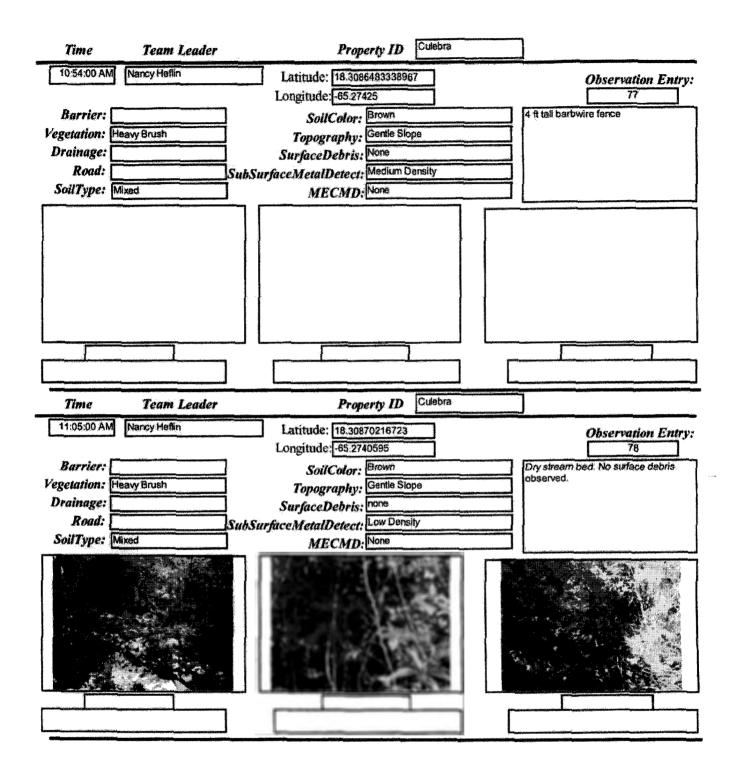


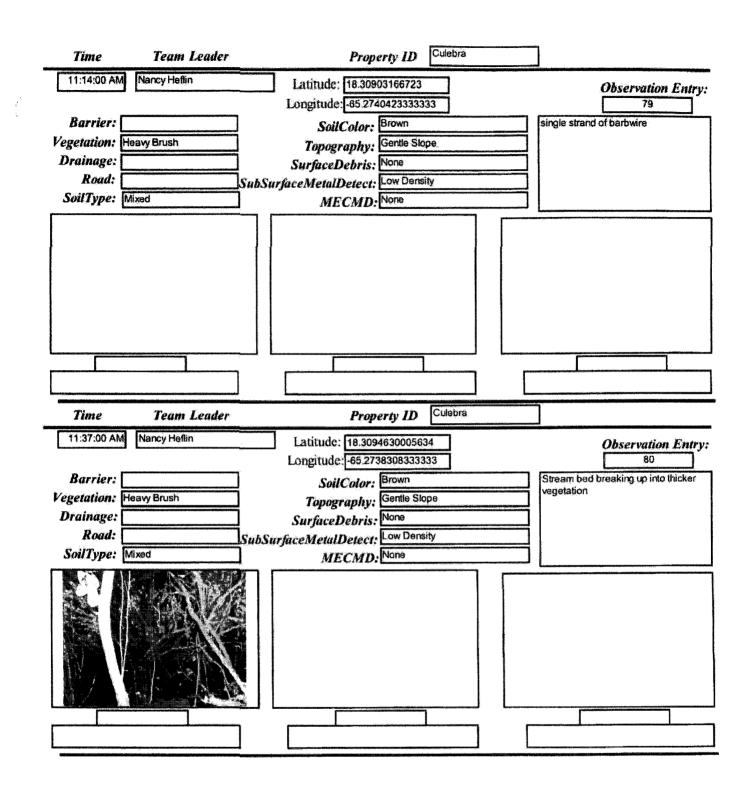


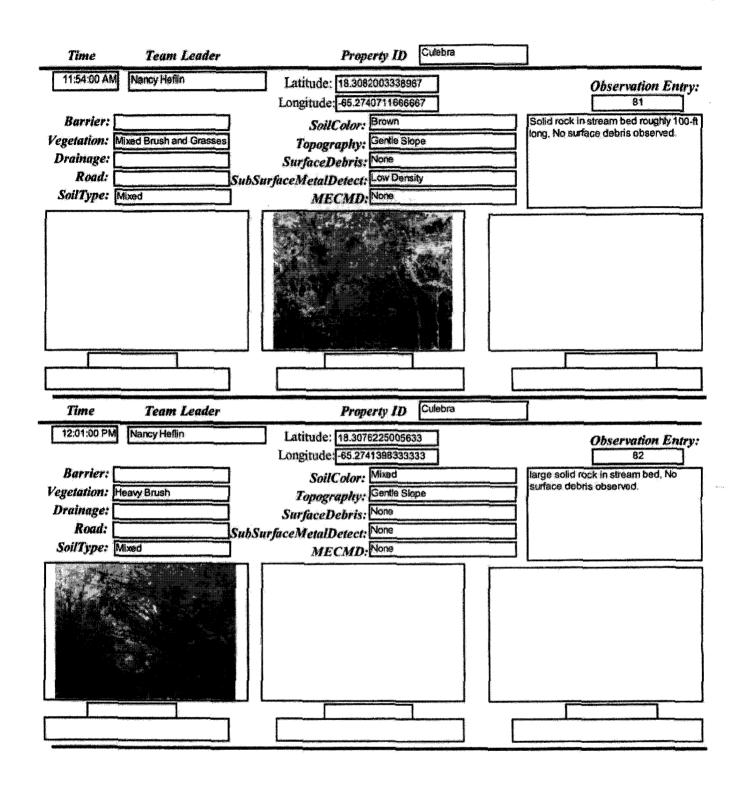


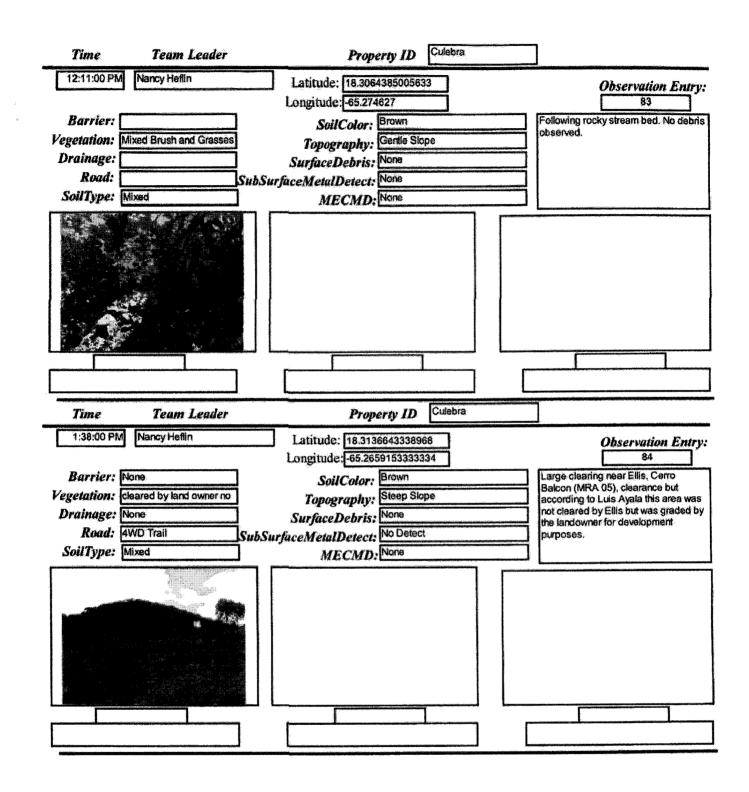


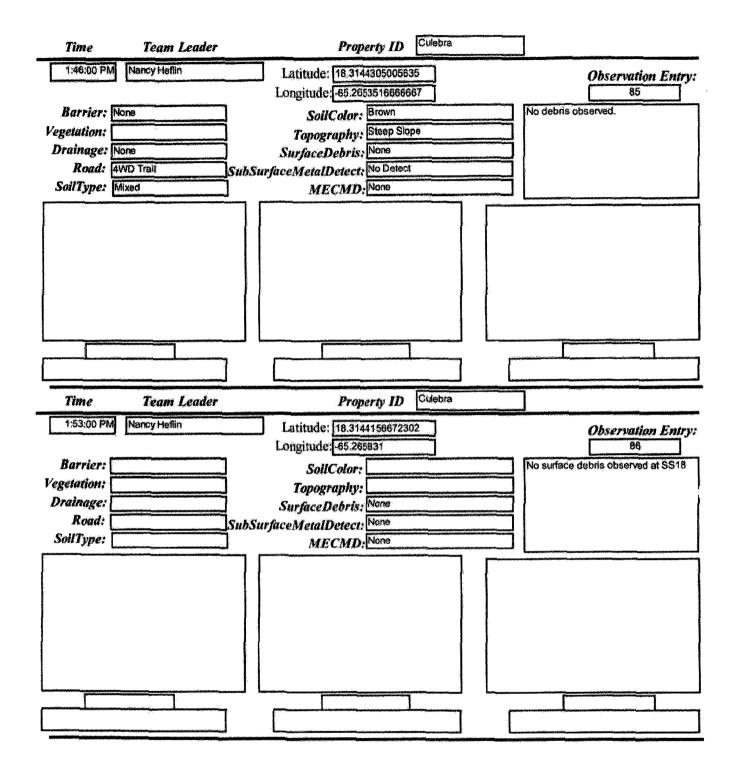


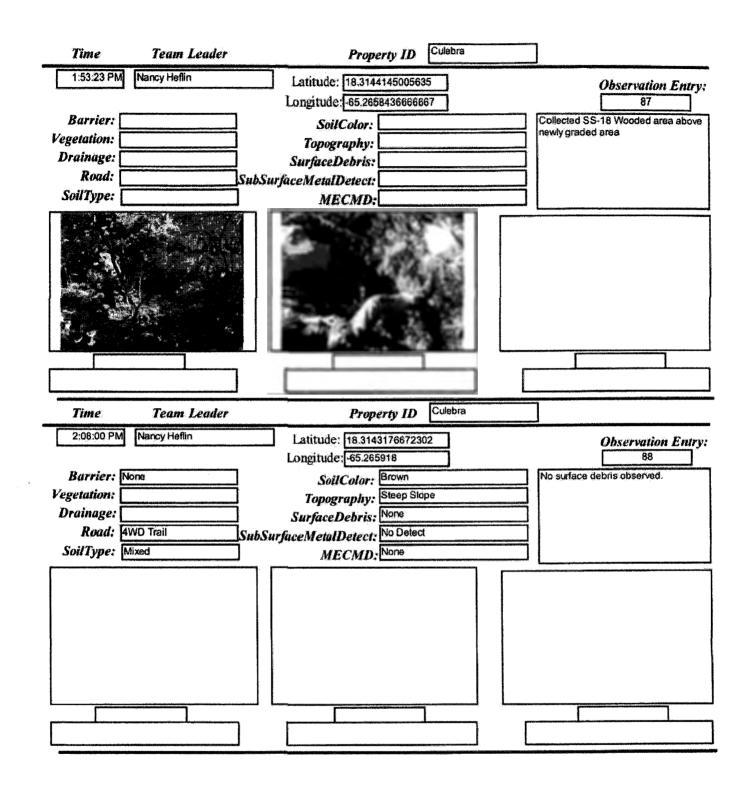


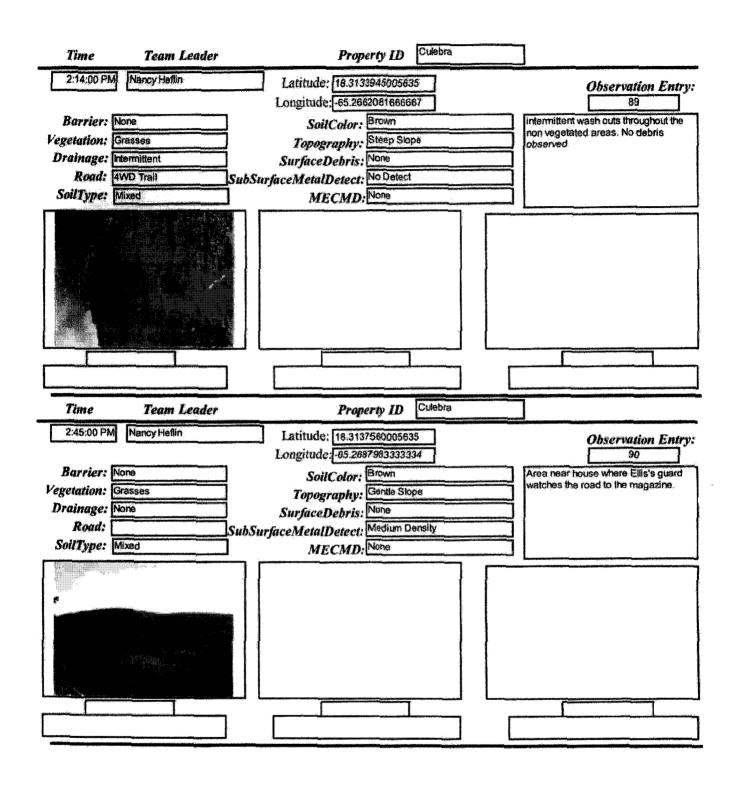

مەر مەر

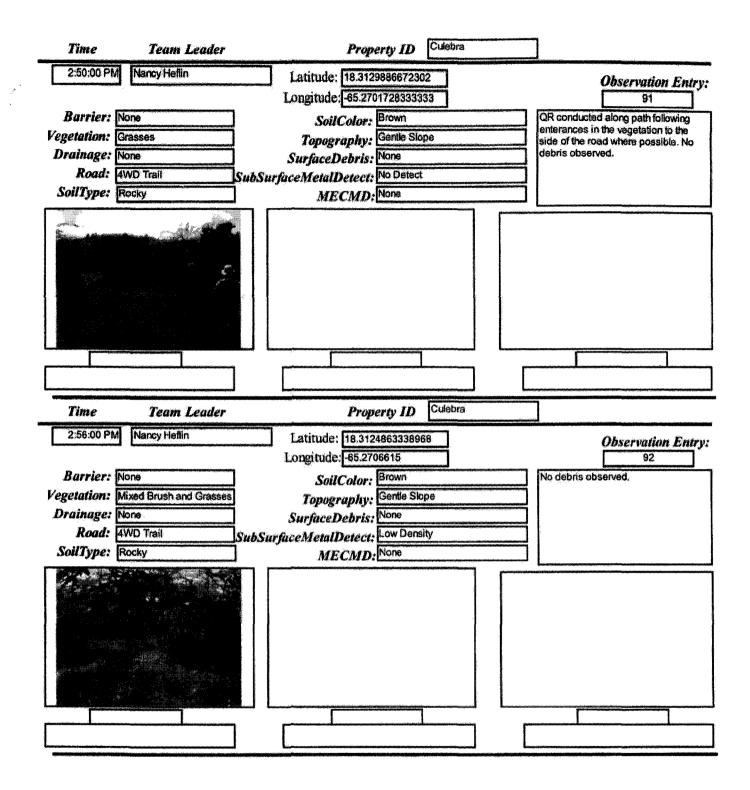


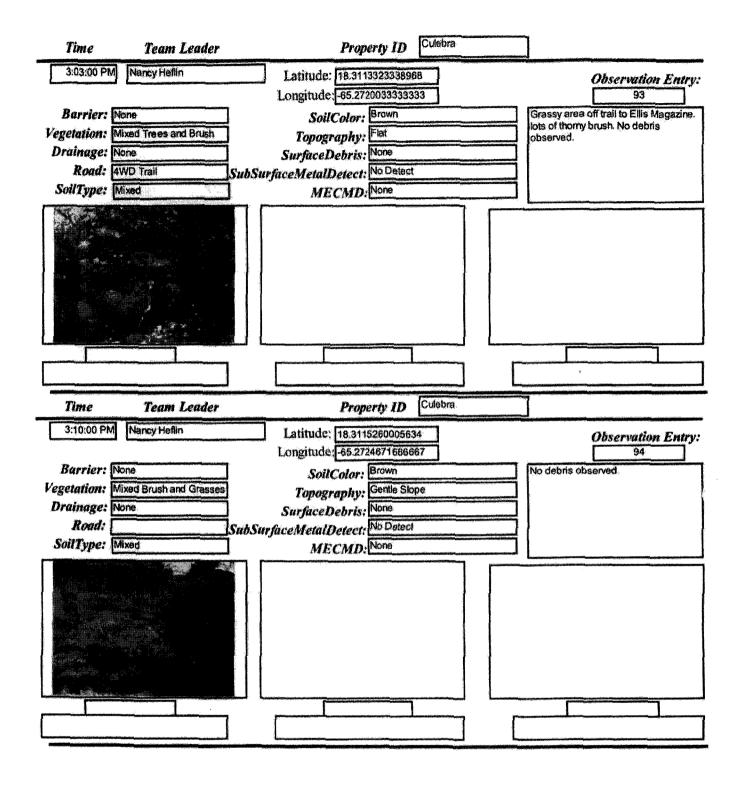


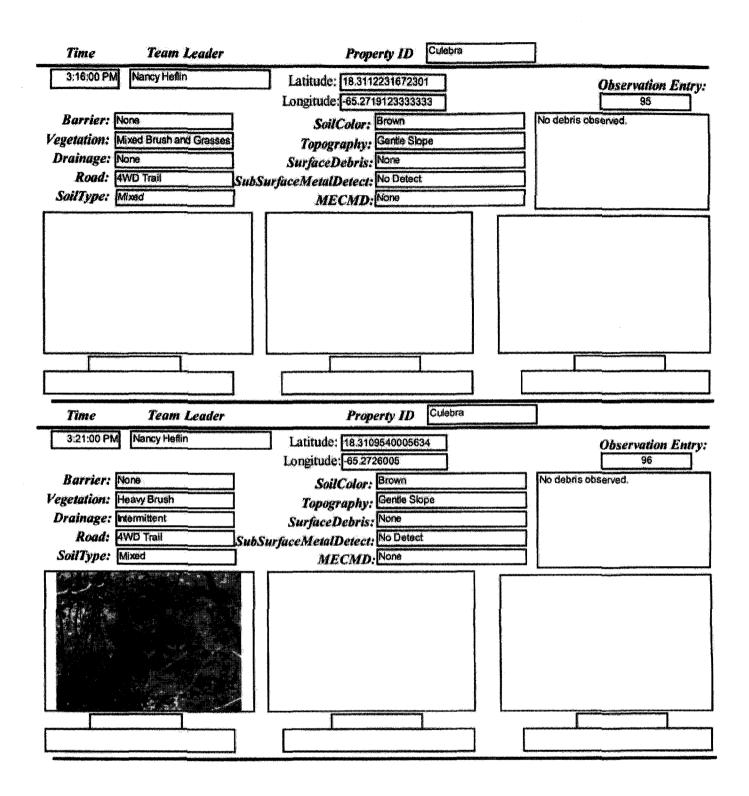


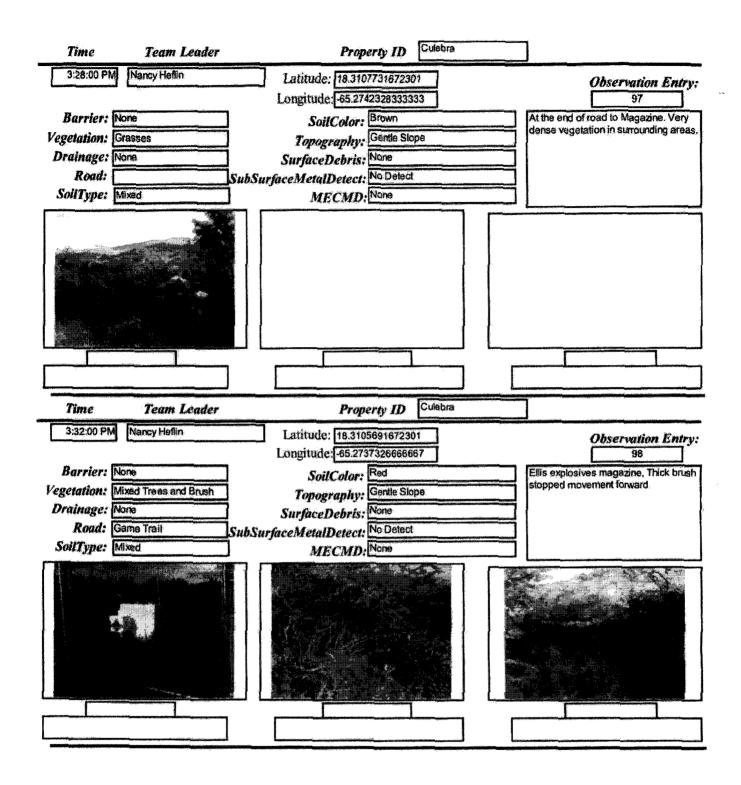


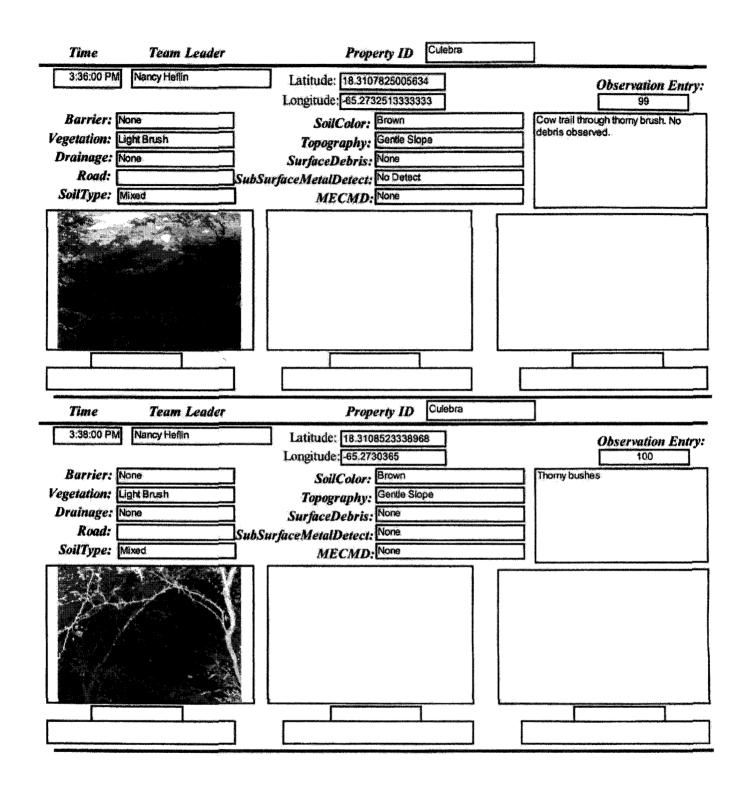


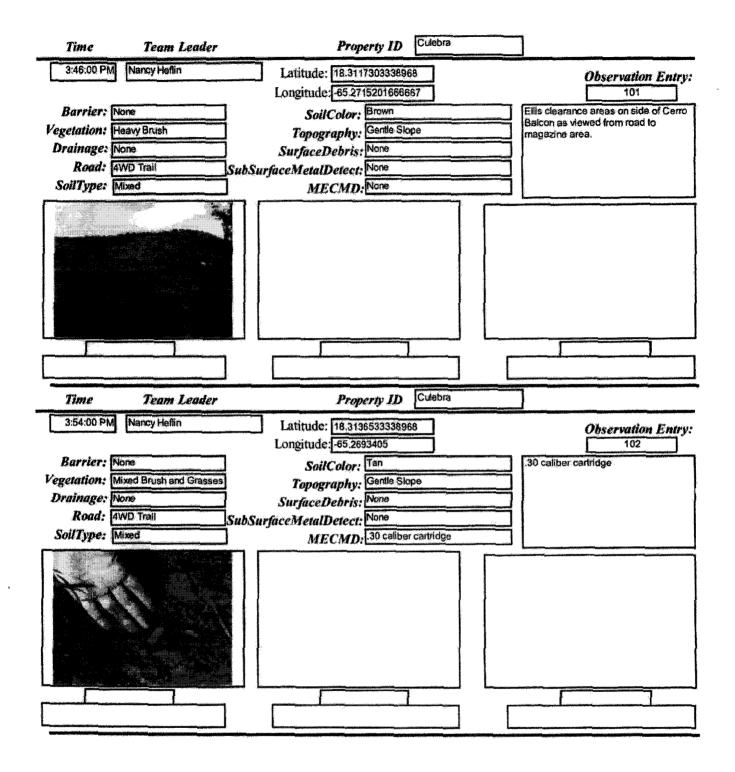




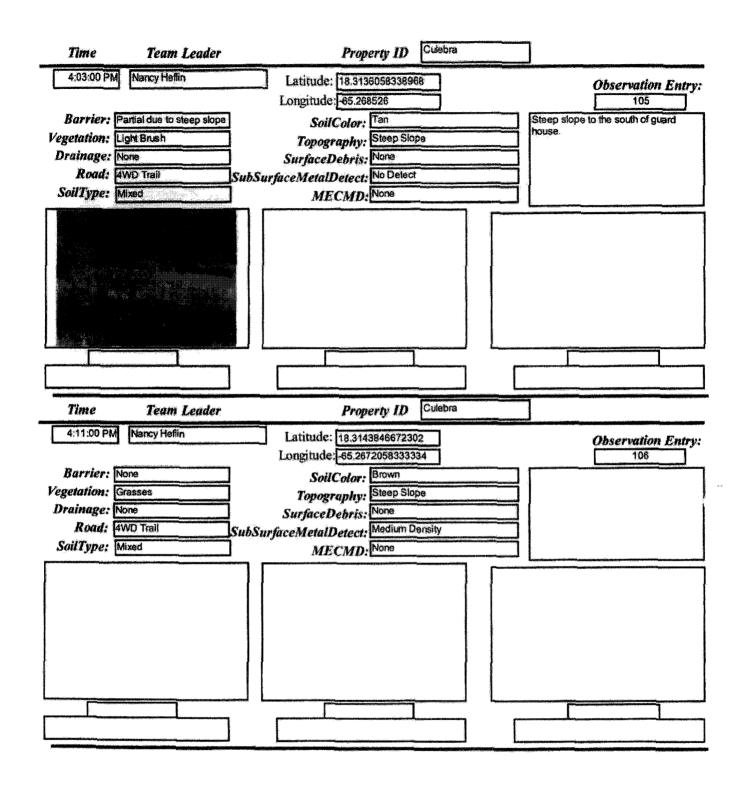


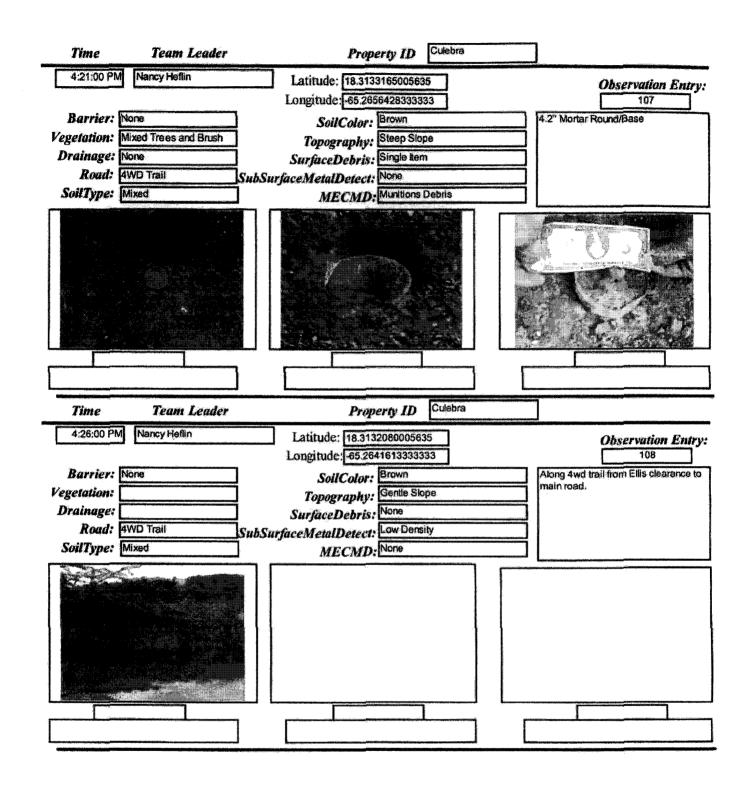


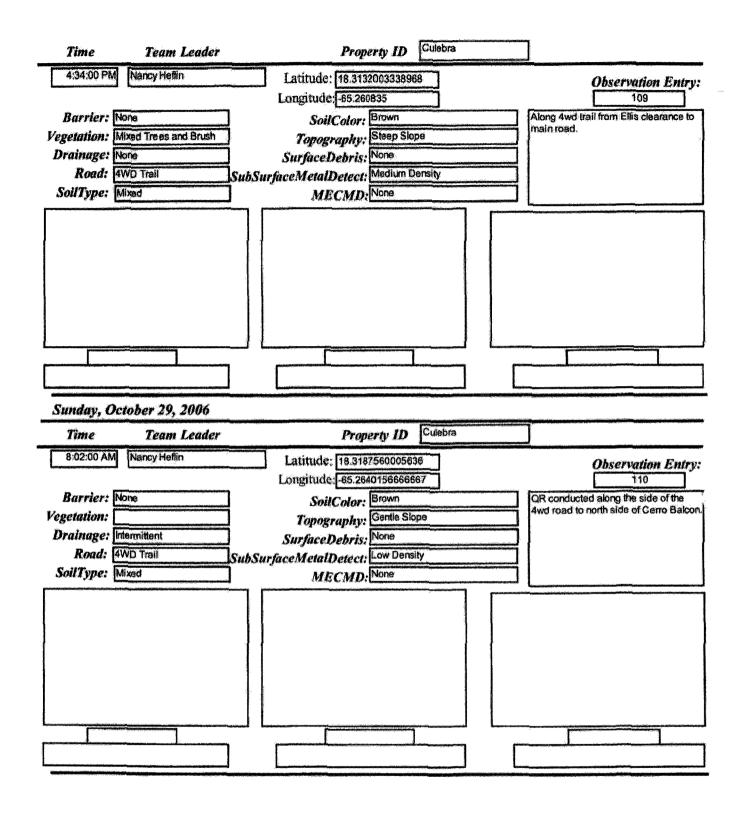

E - 46

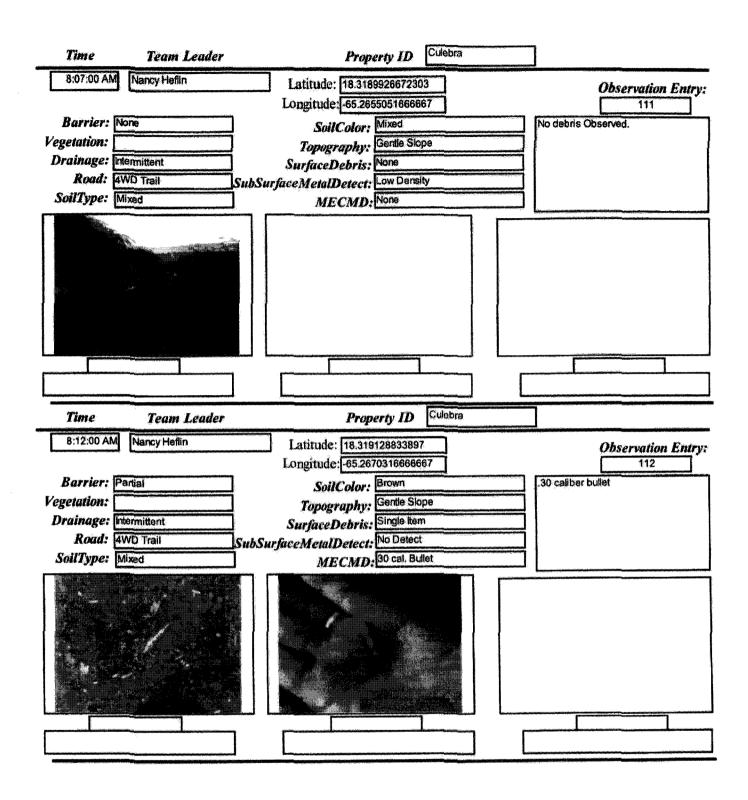


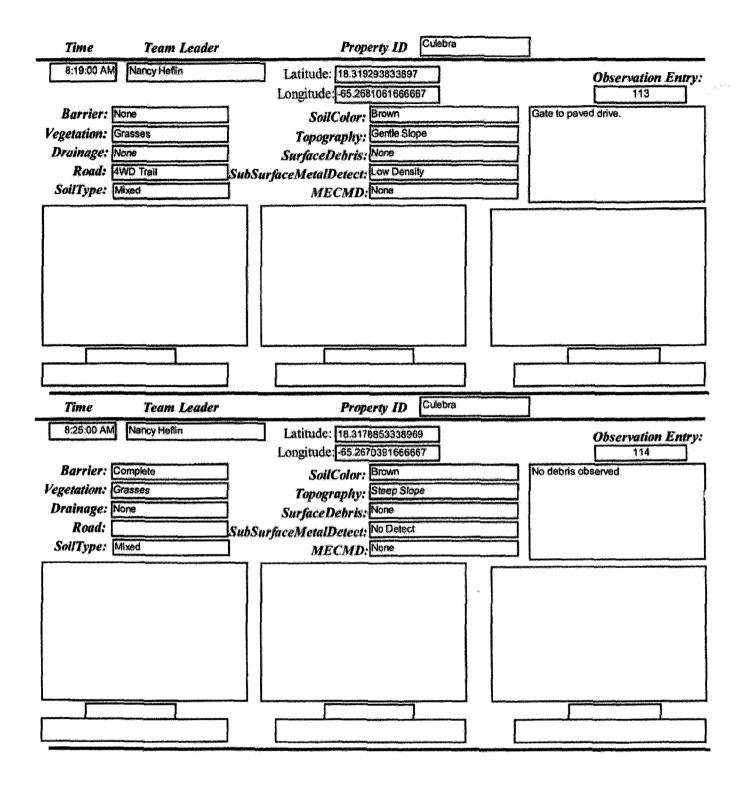


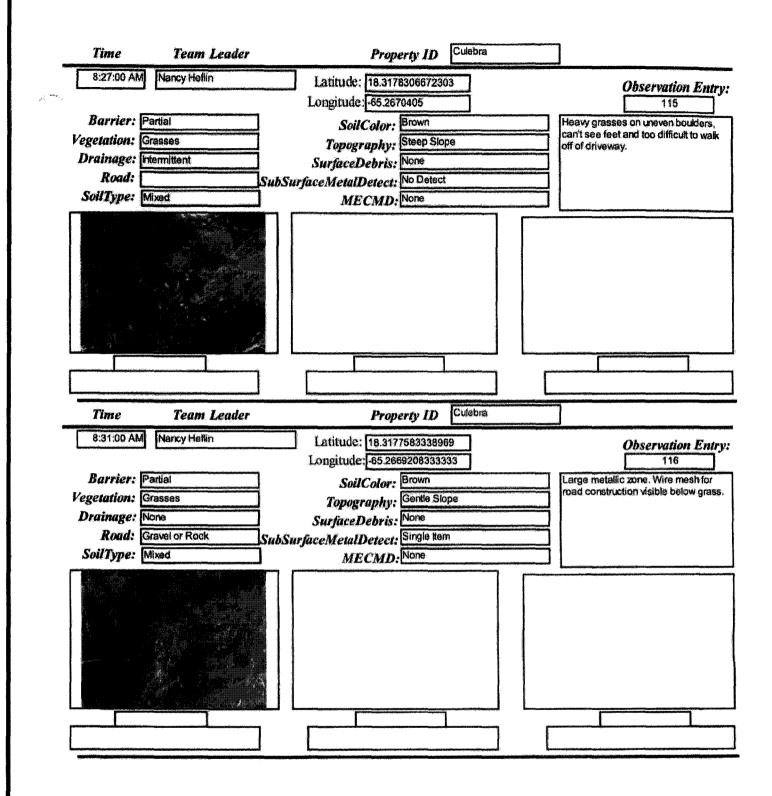


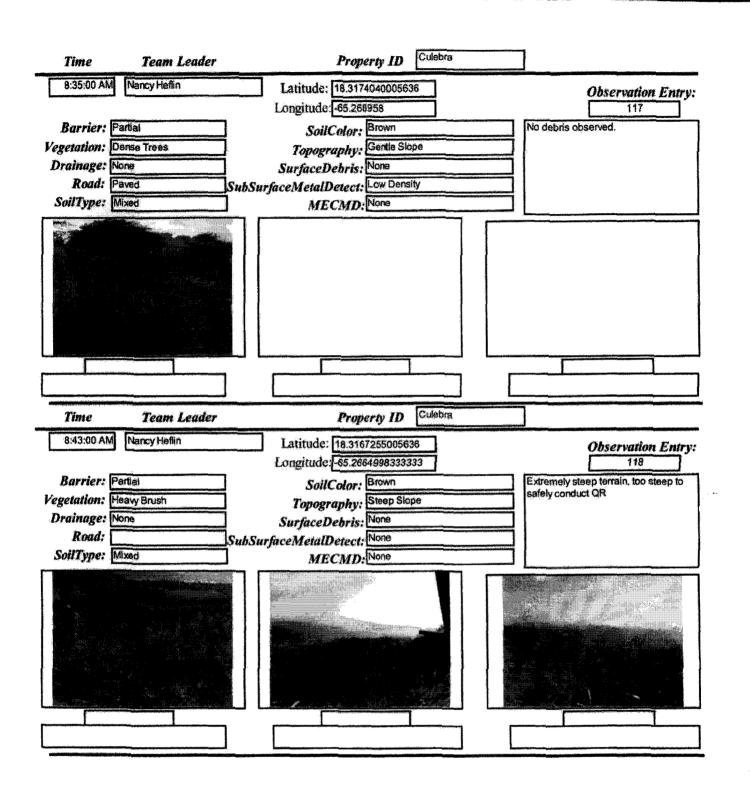


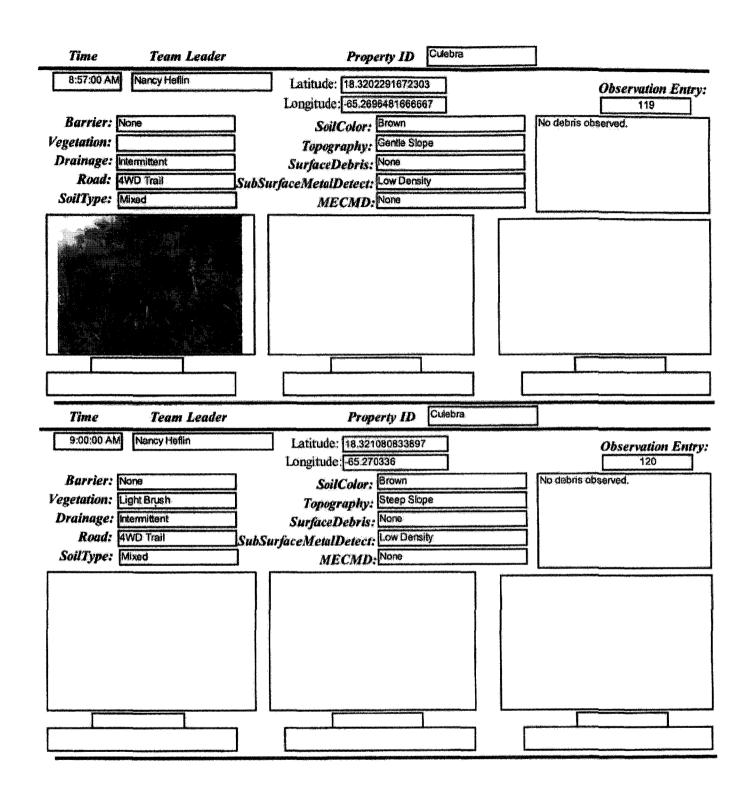


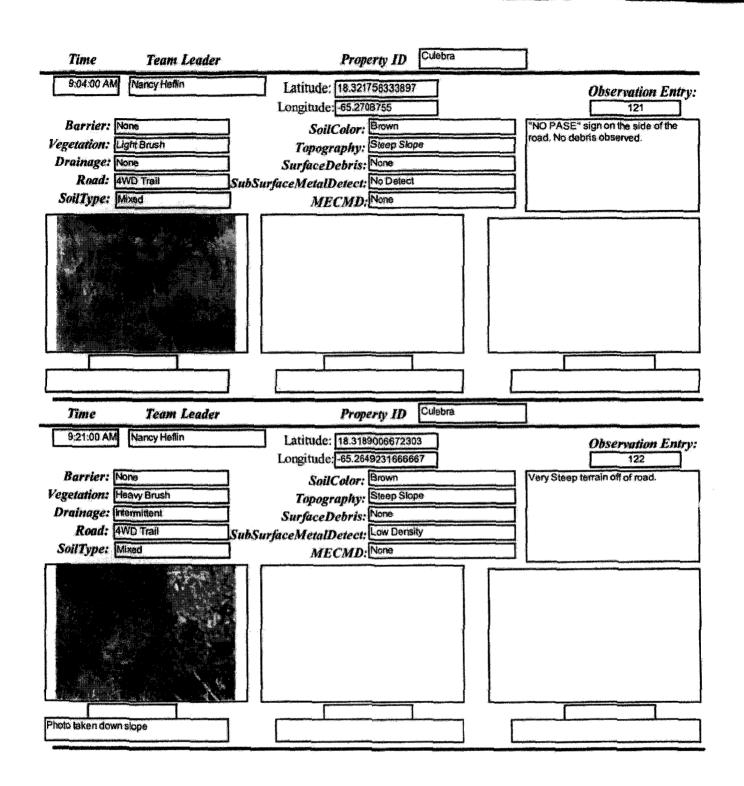


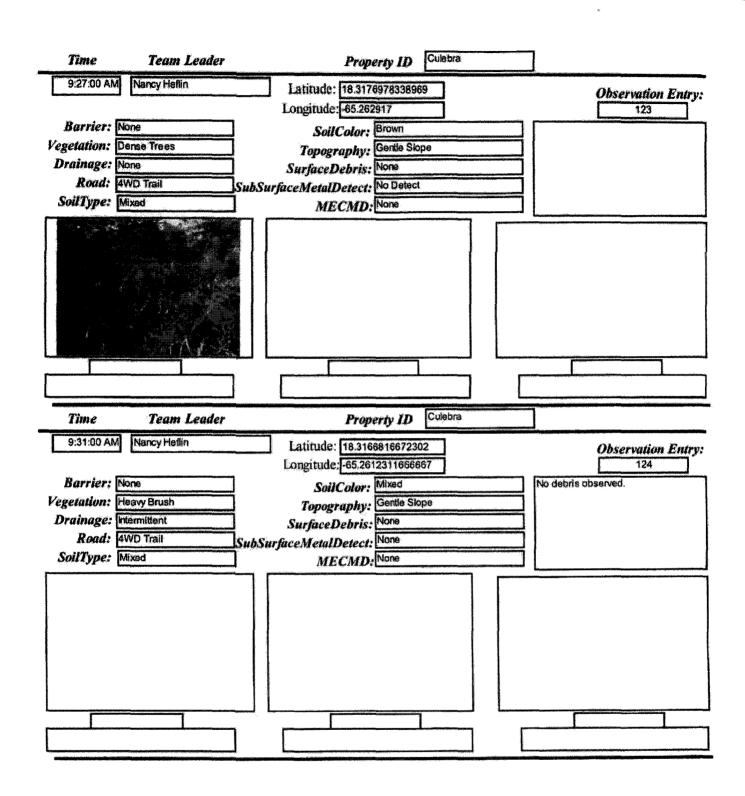


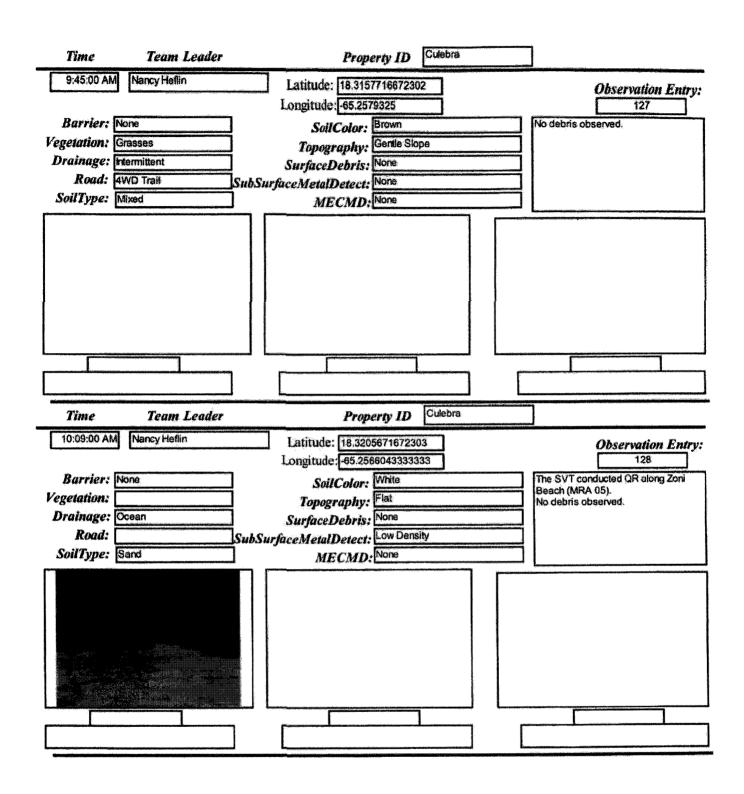

1.

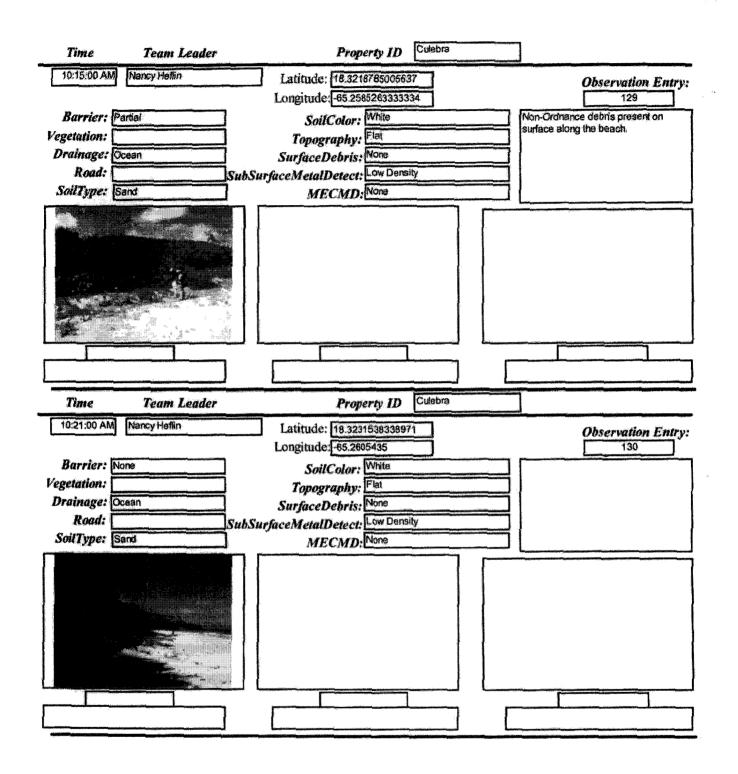


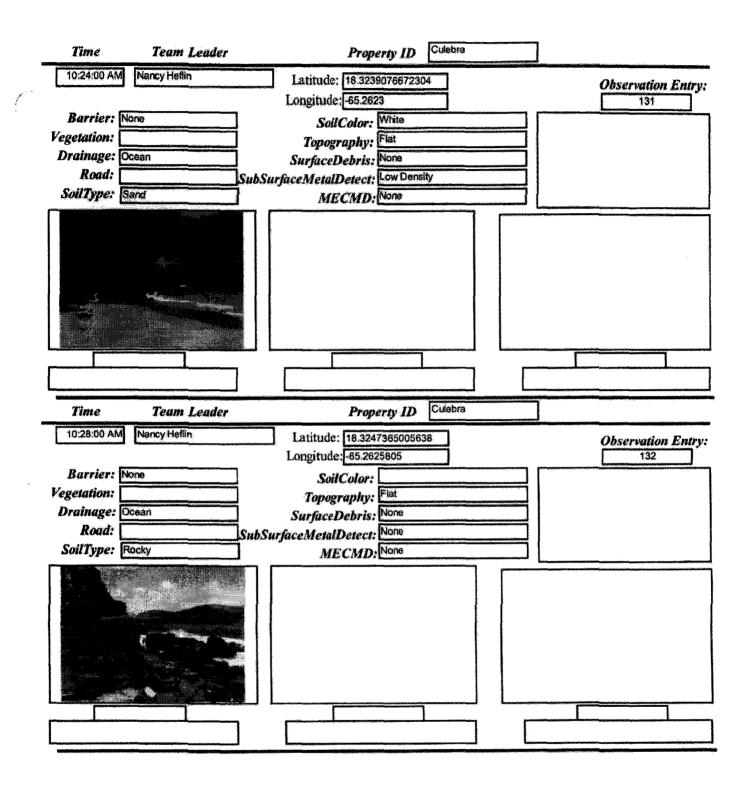


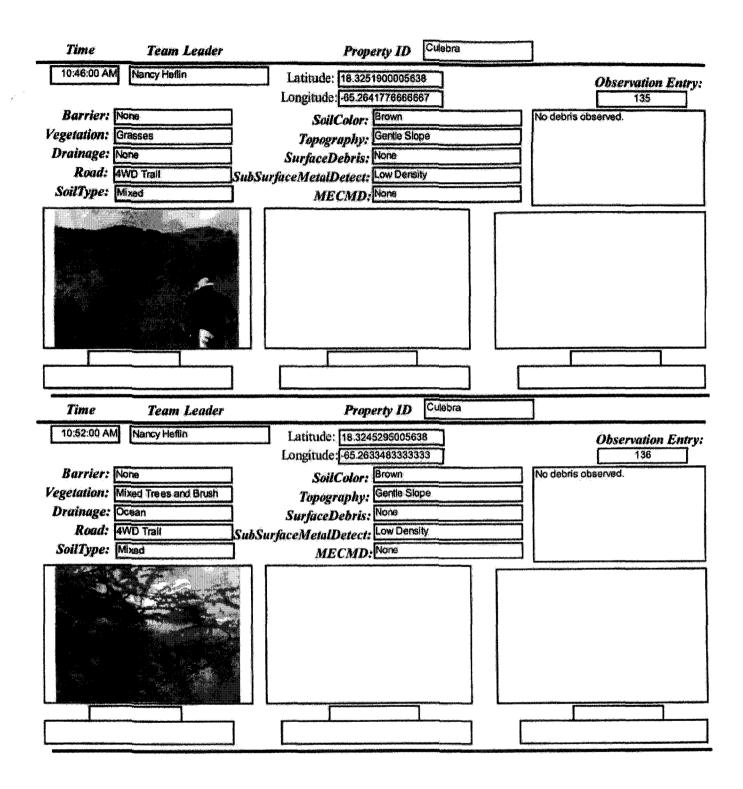


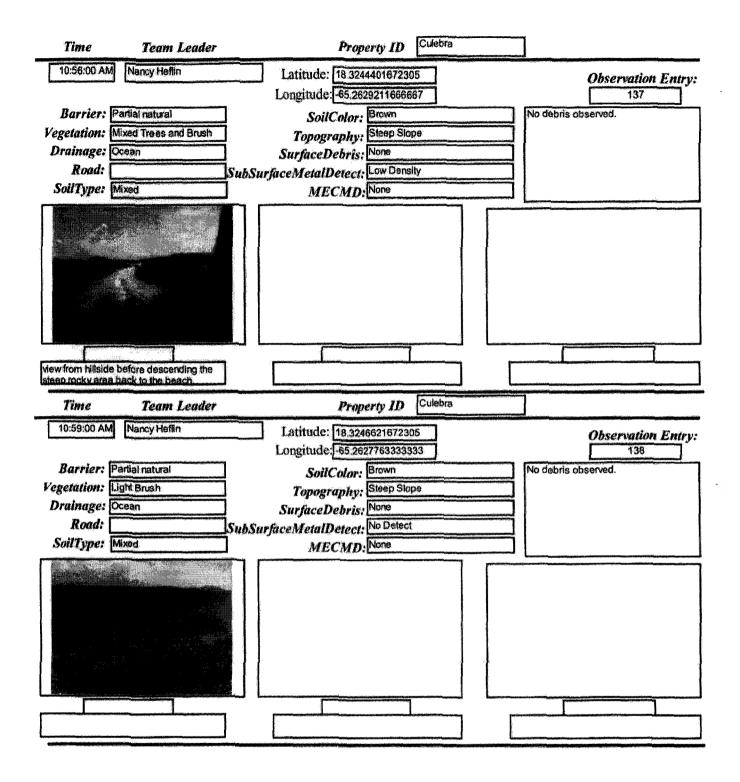


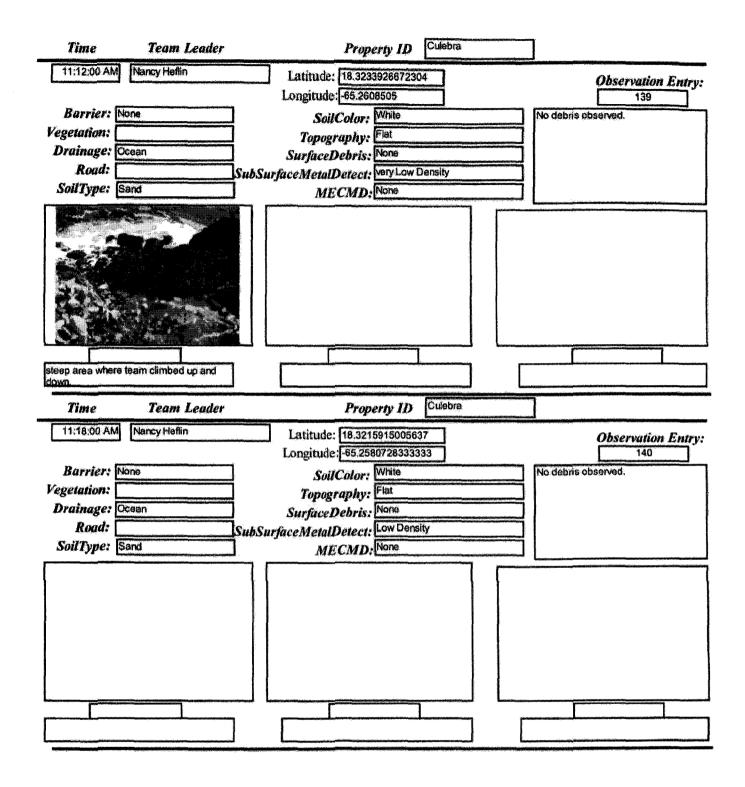


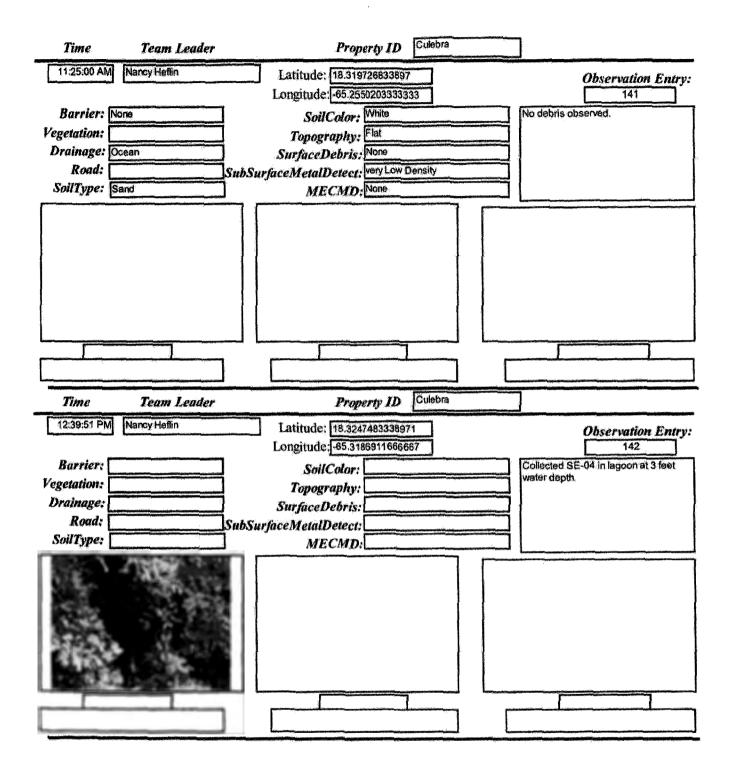


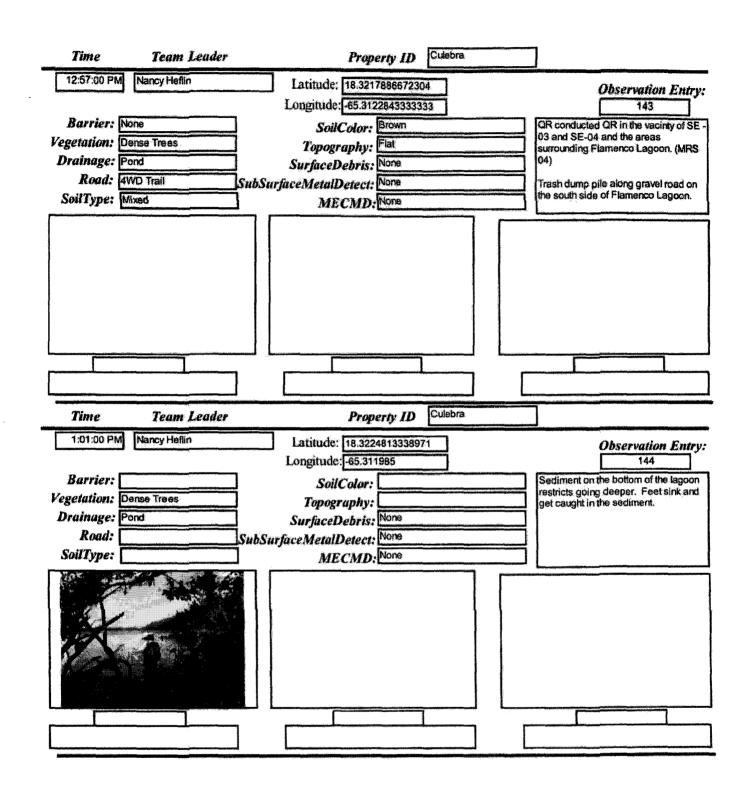


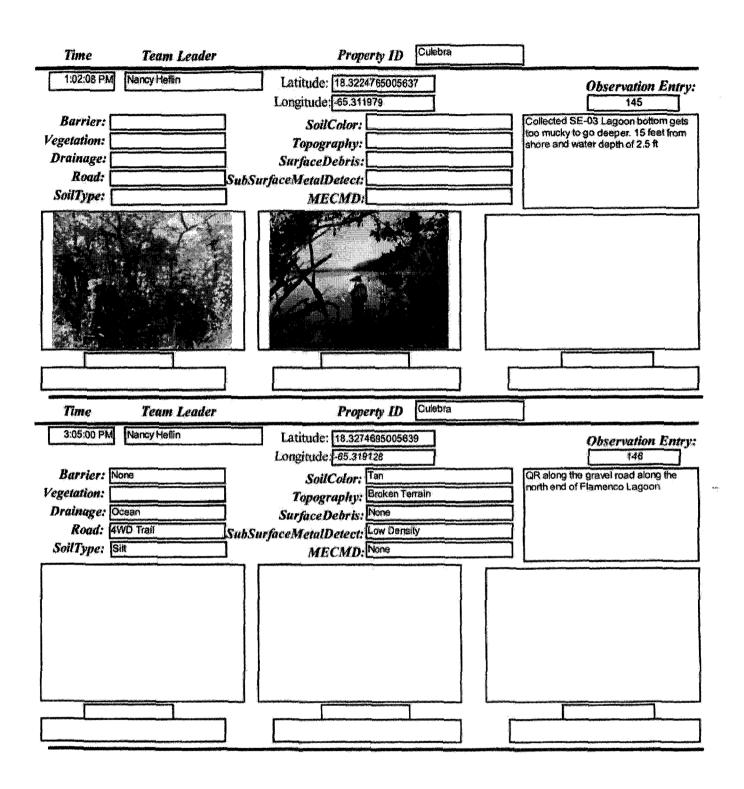


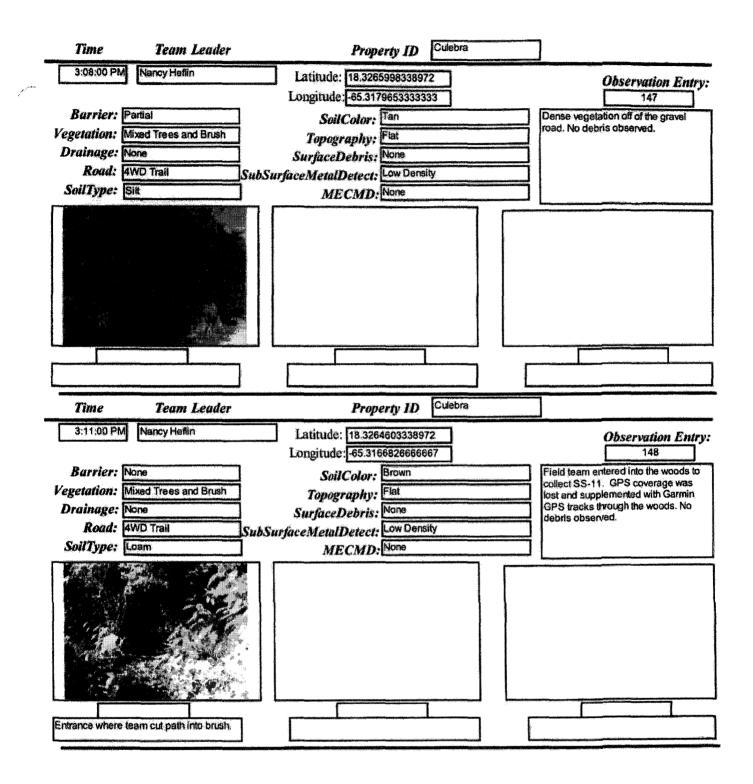


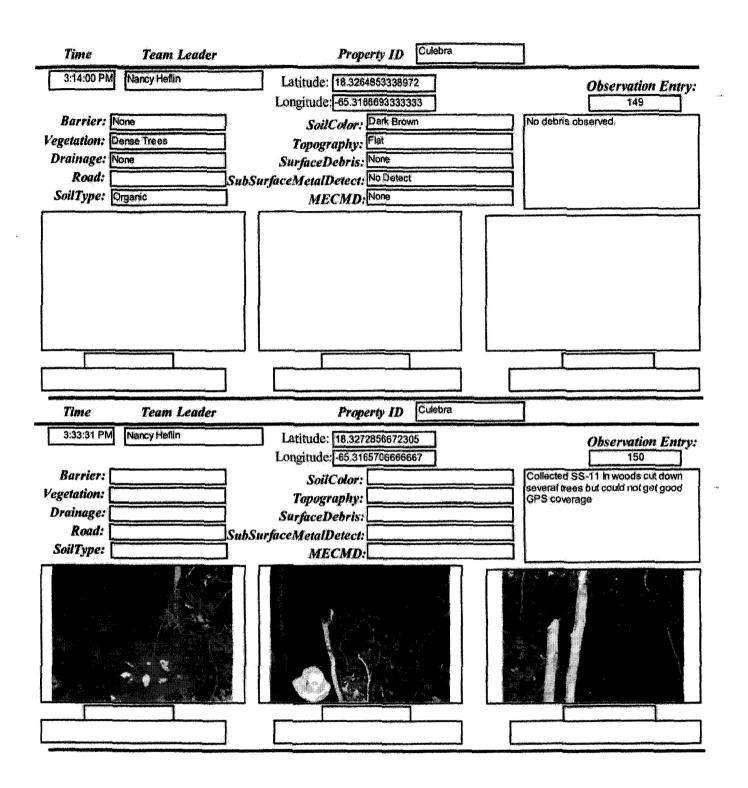


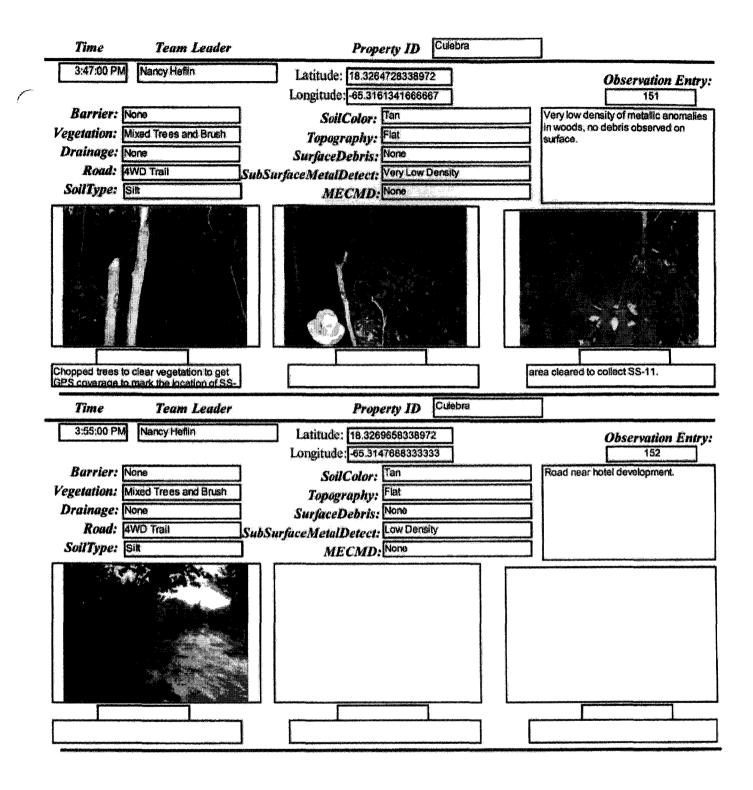


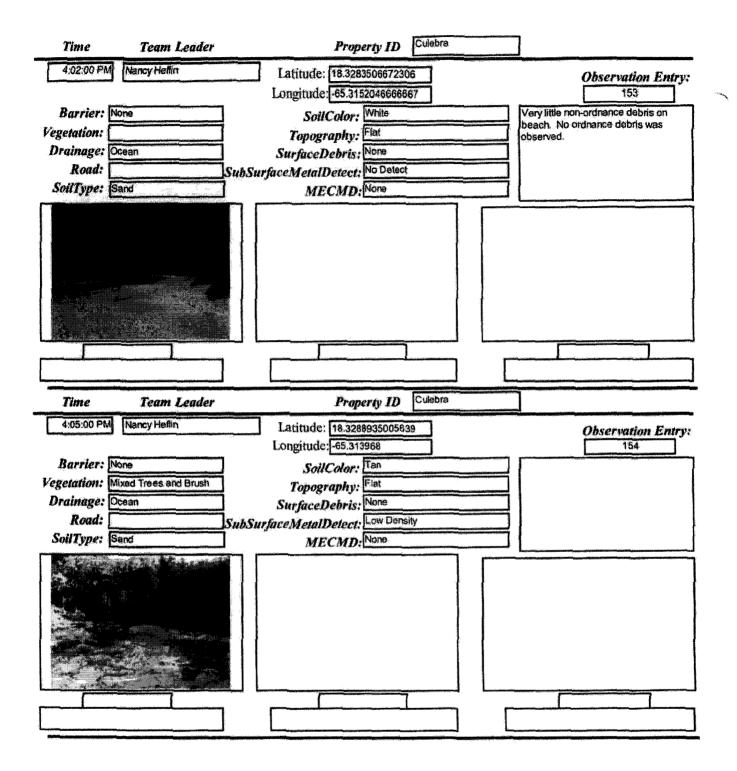


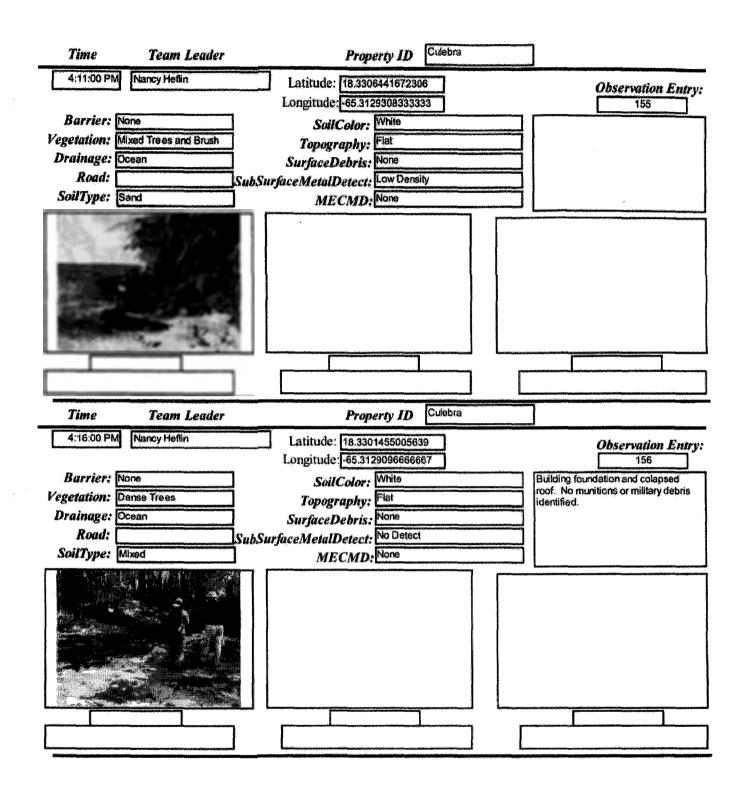


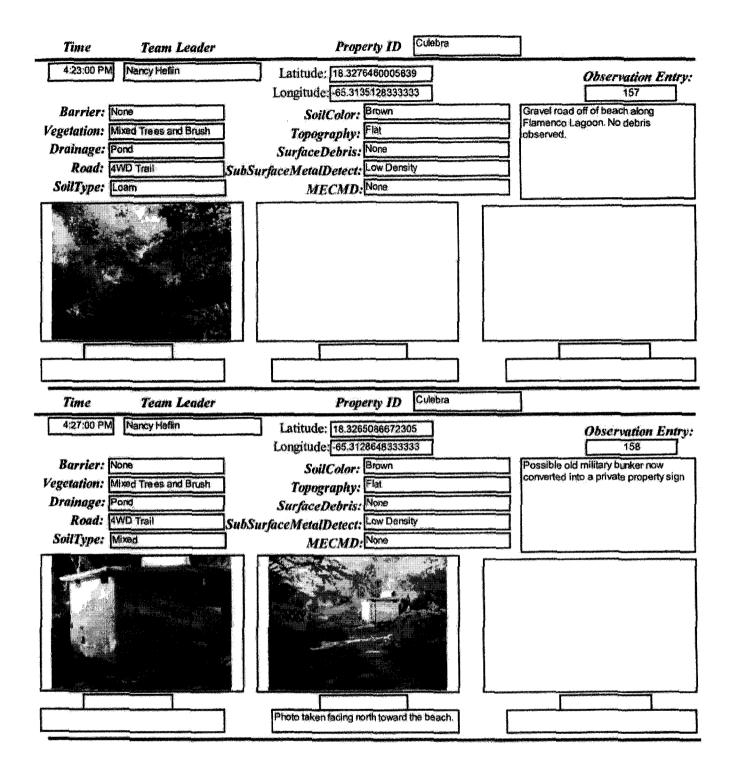


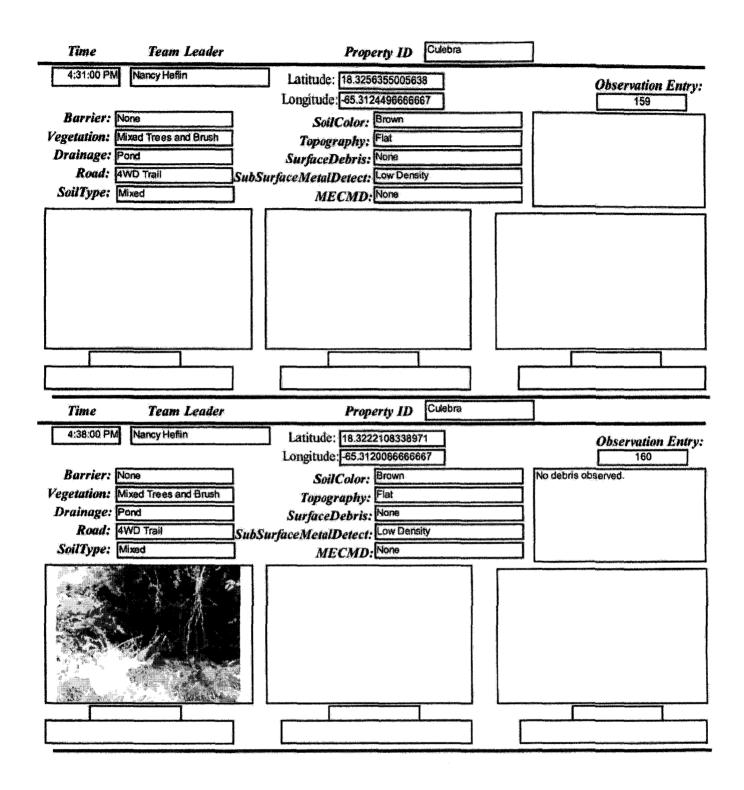




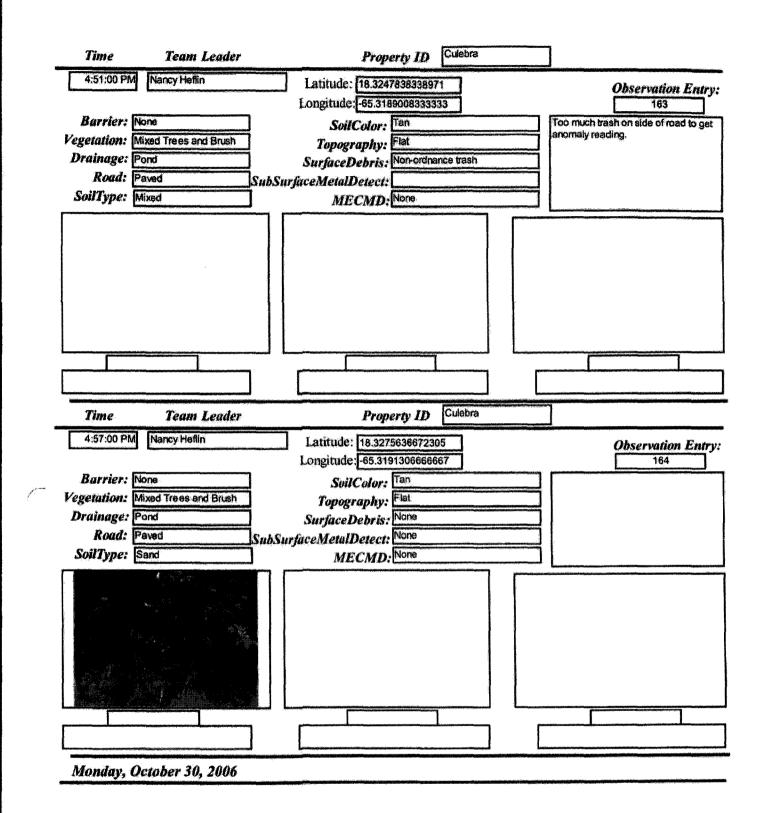


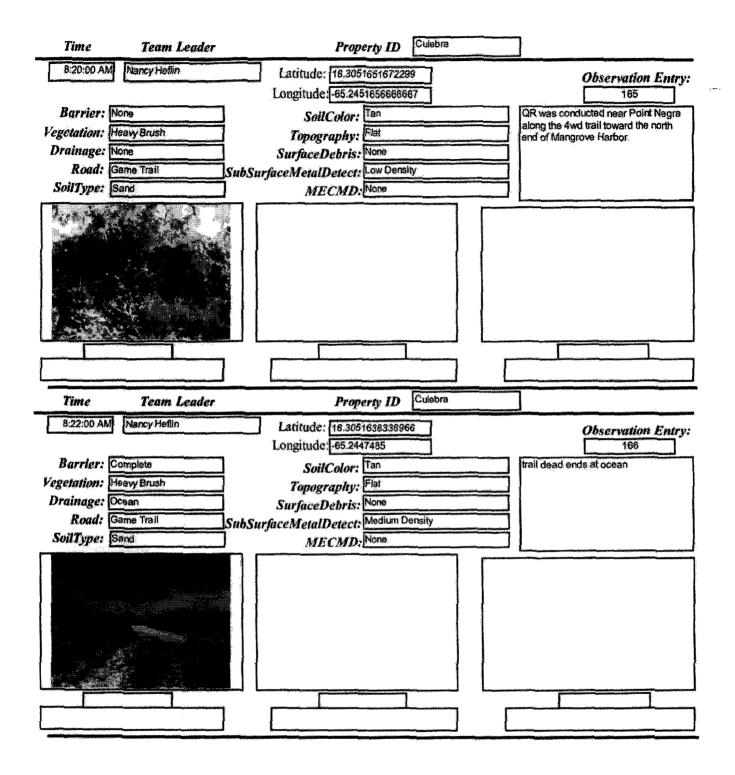


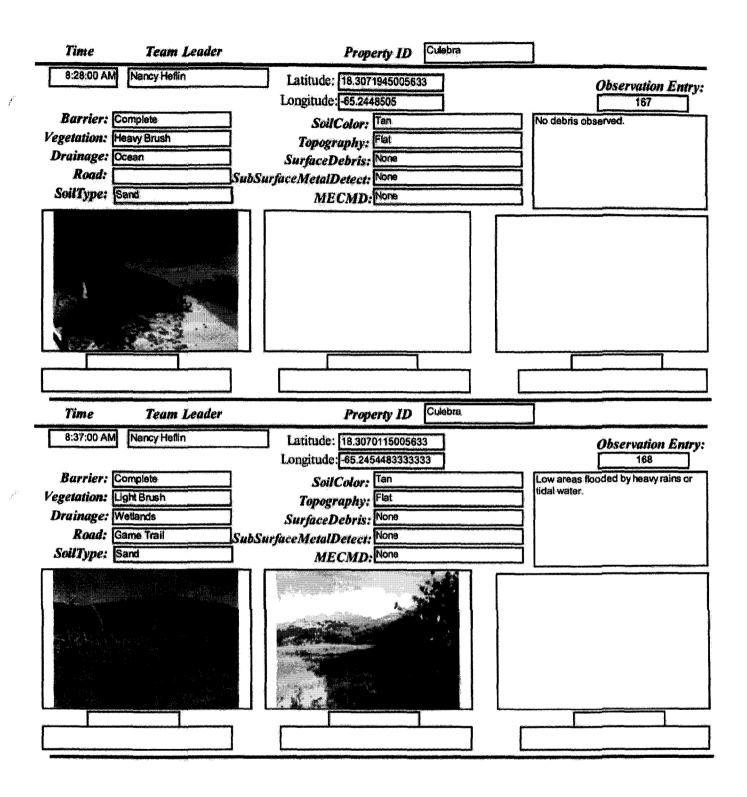


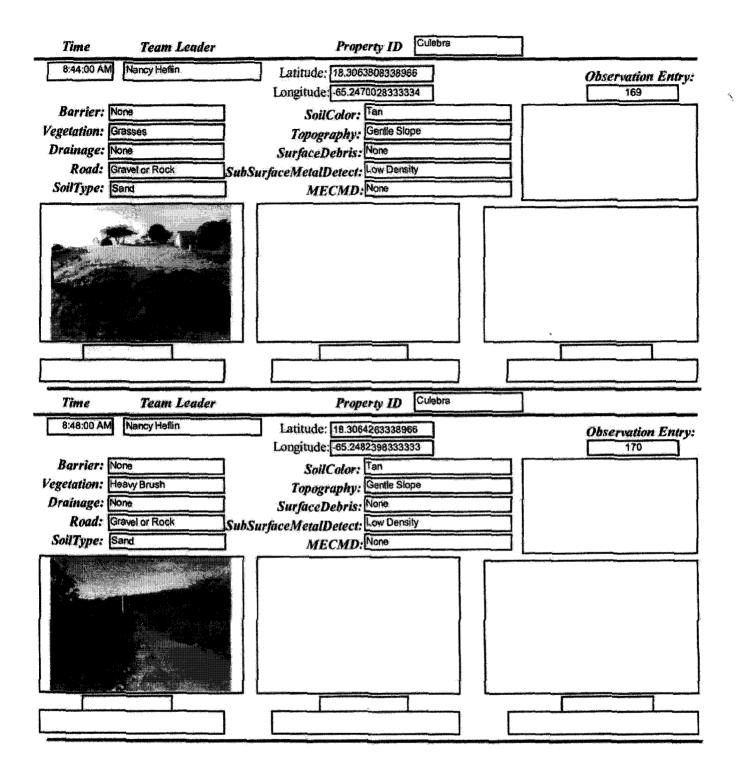


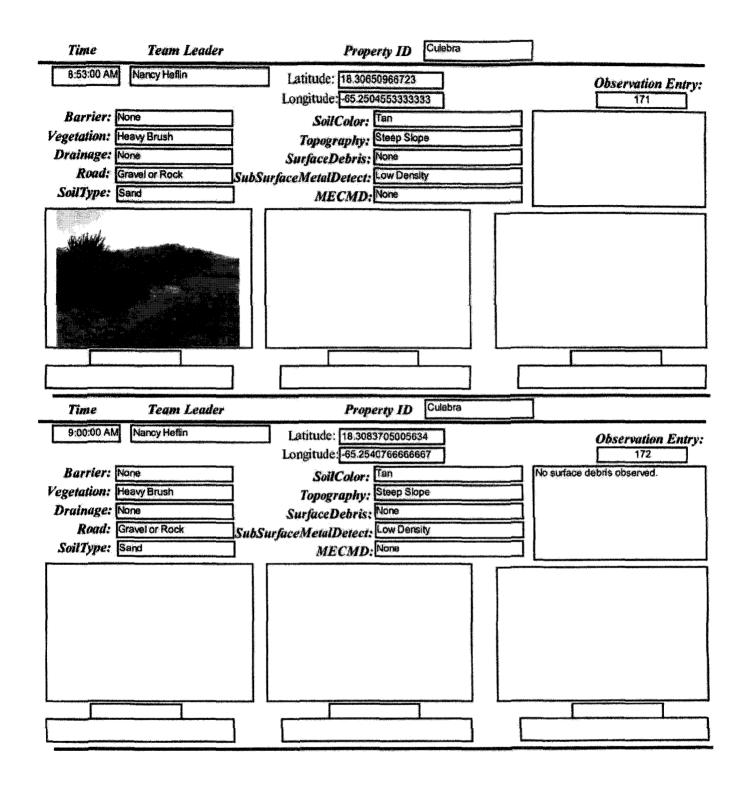


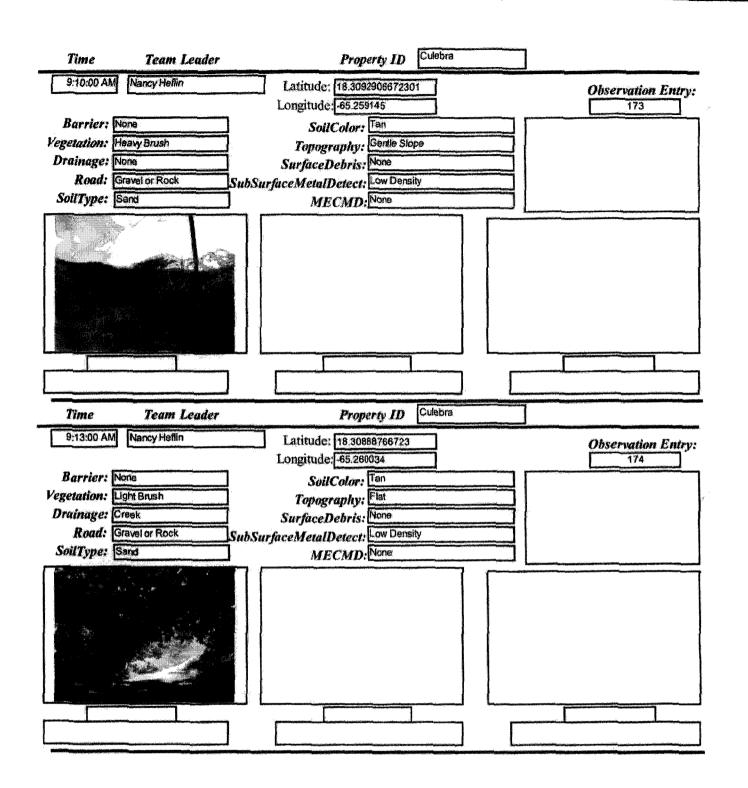


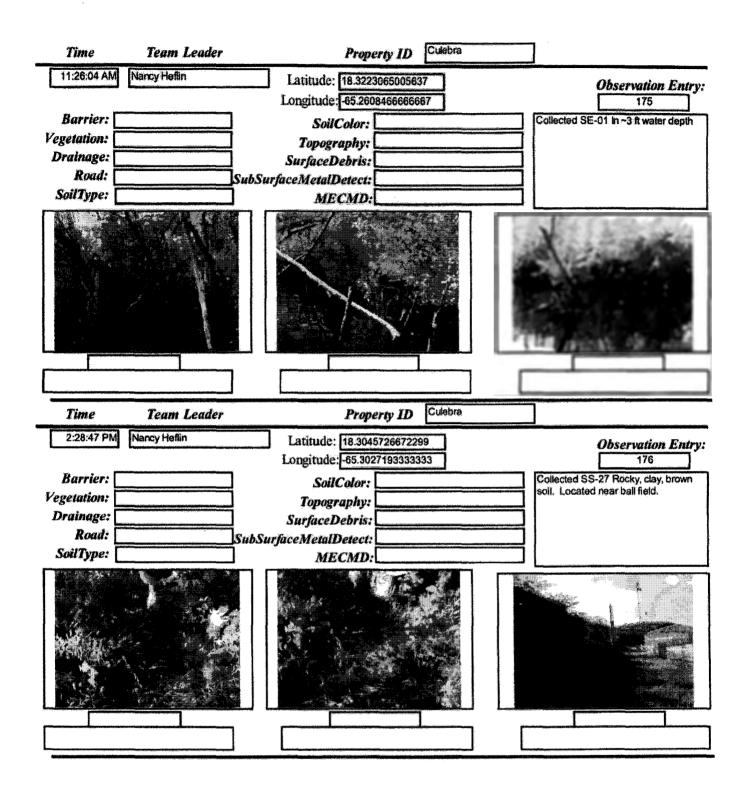


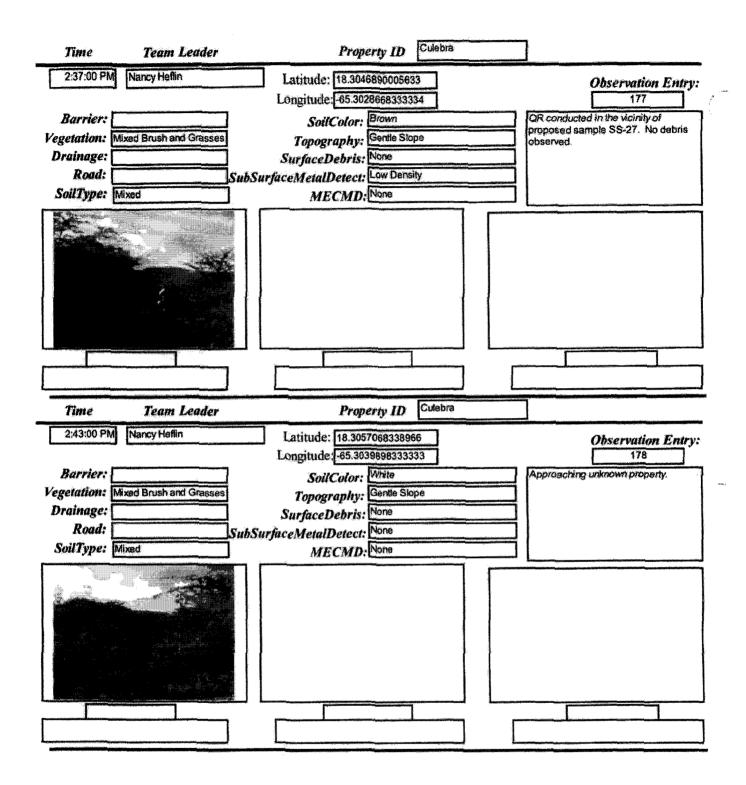


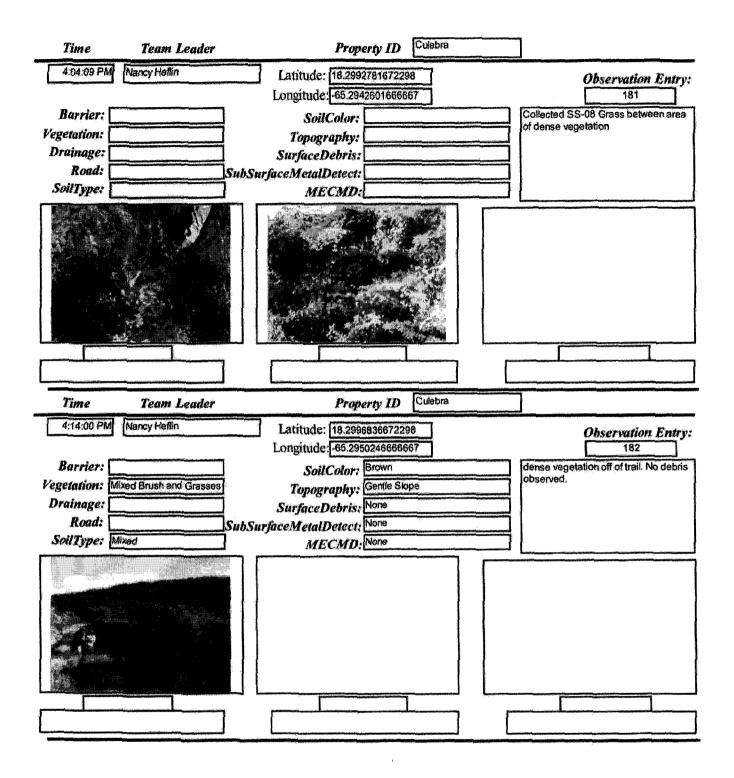

.

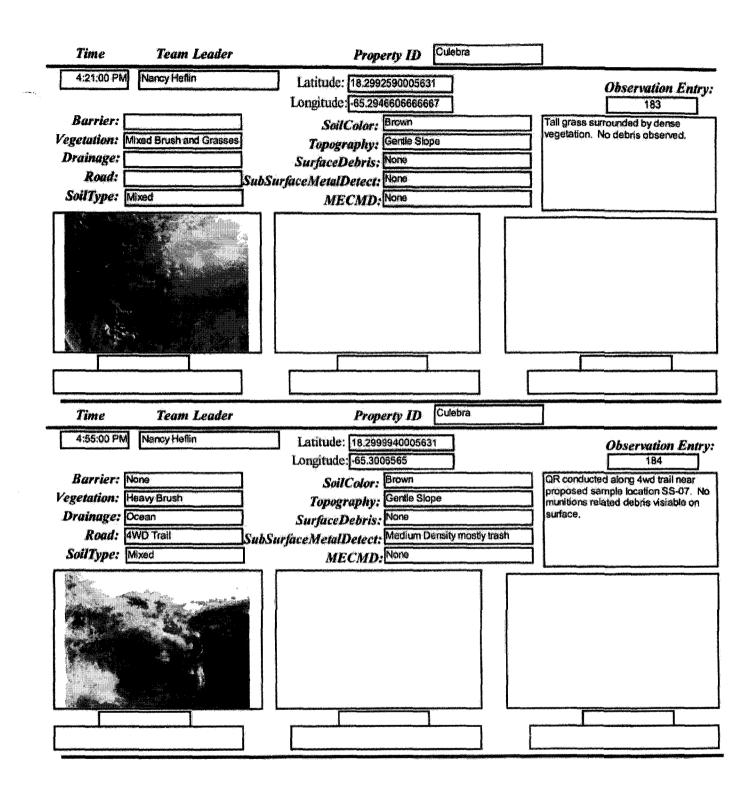


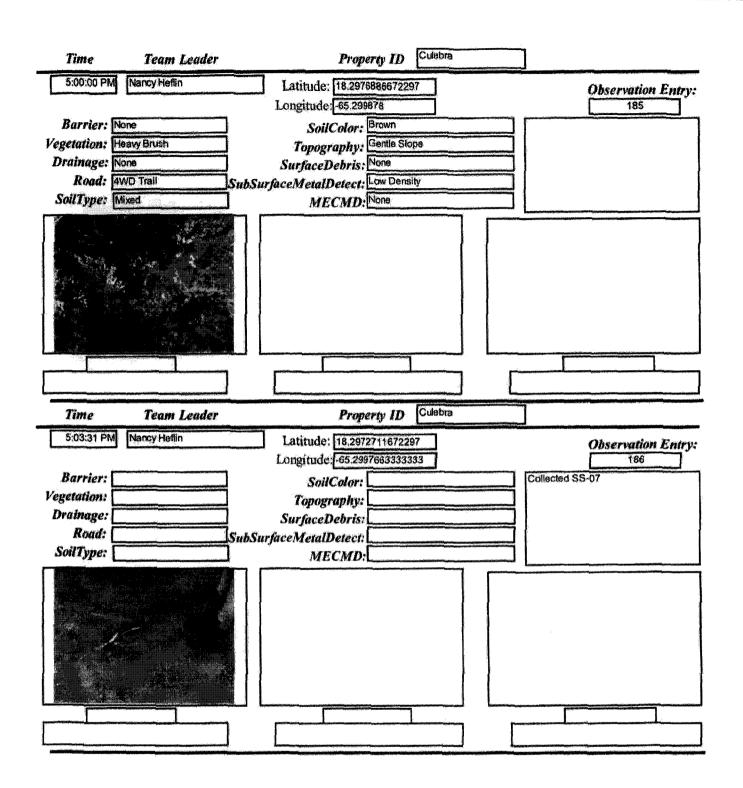


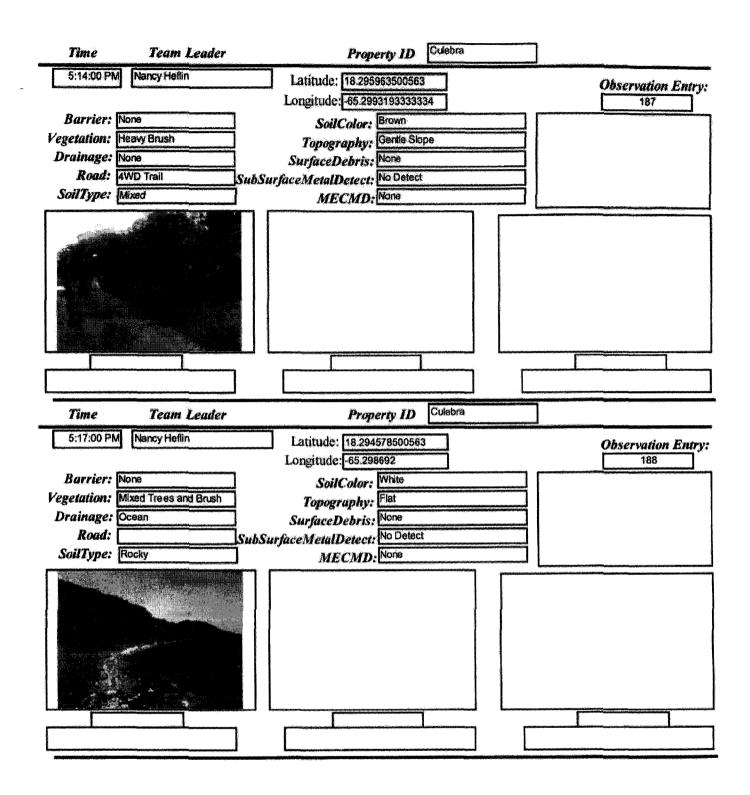


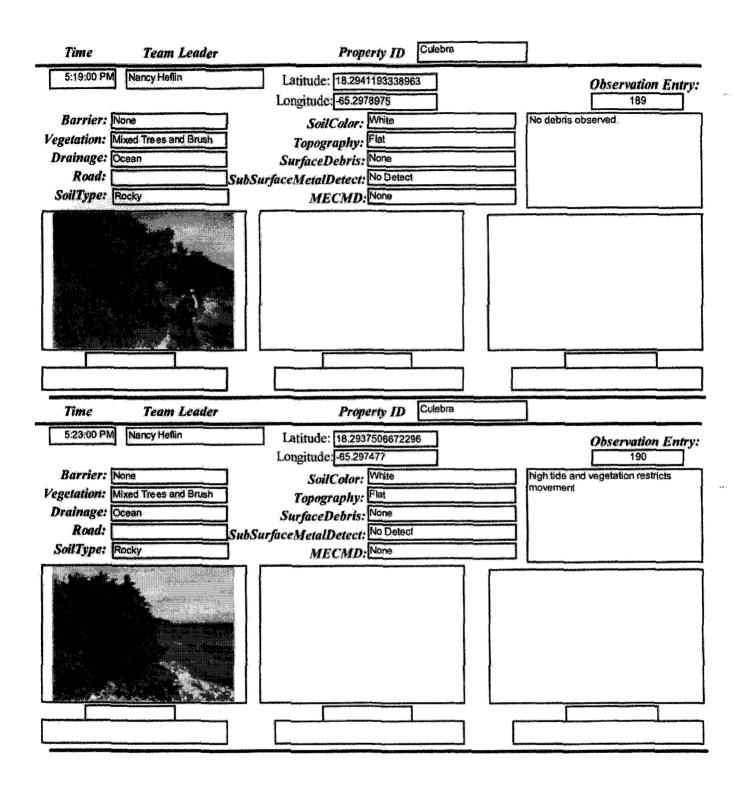


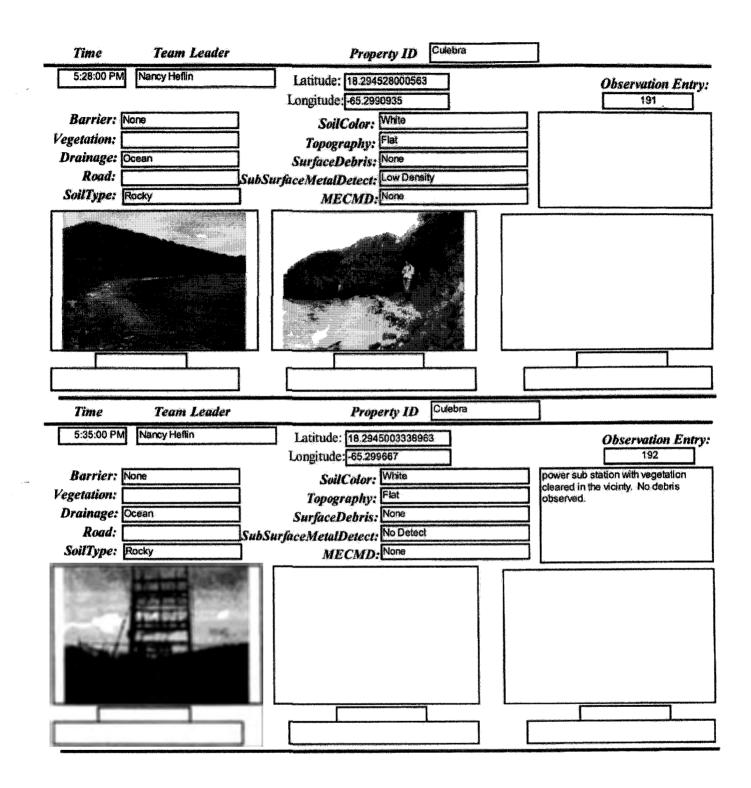

ŕ

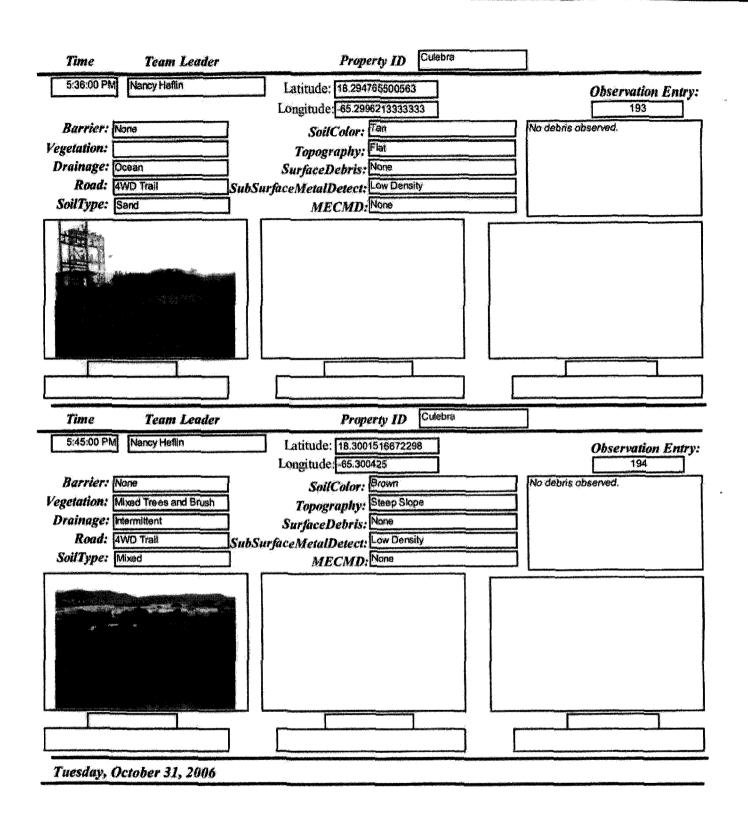

×

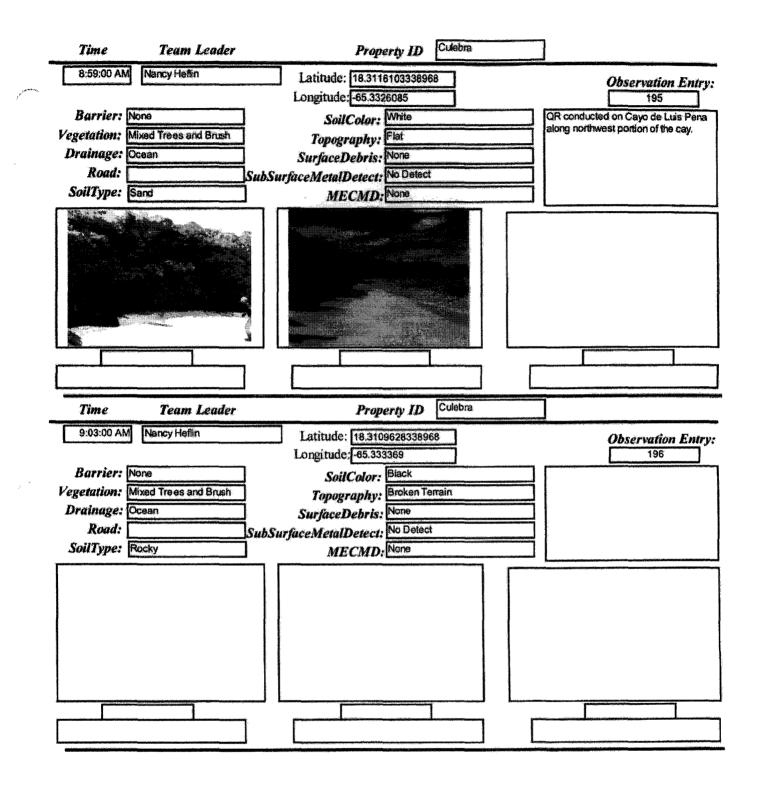


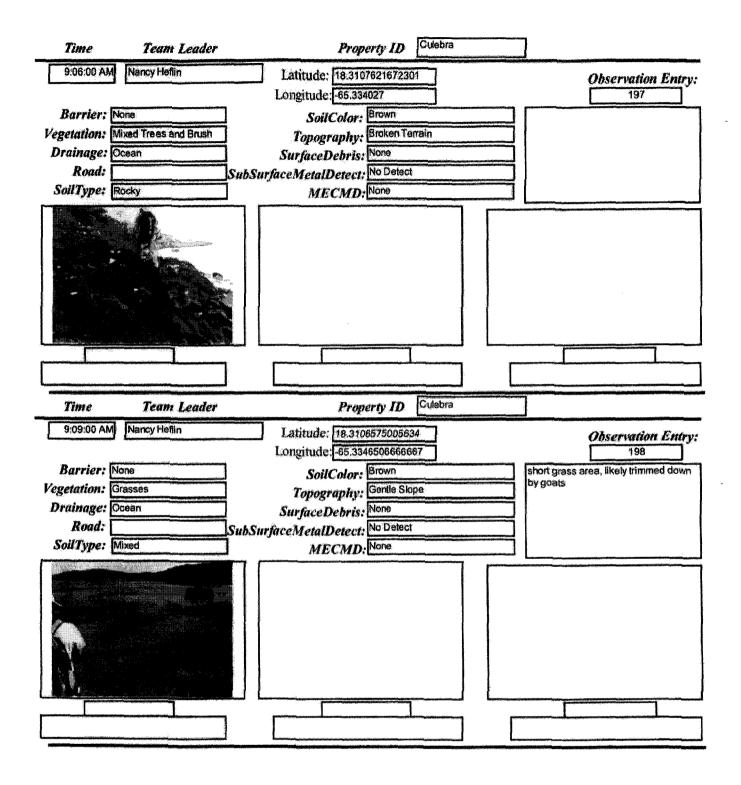


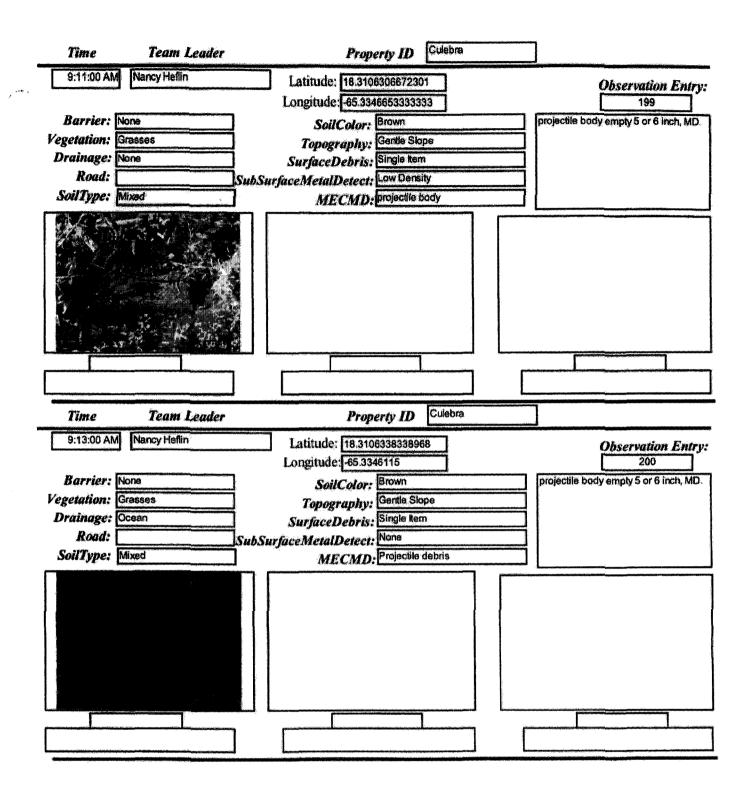


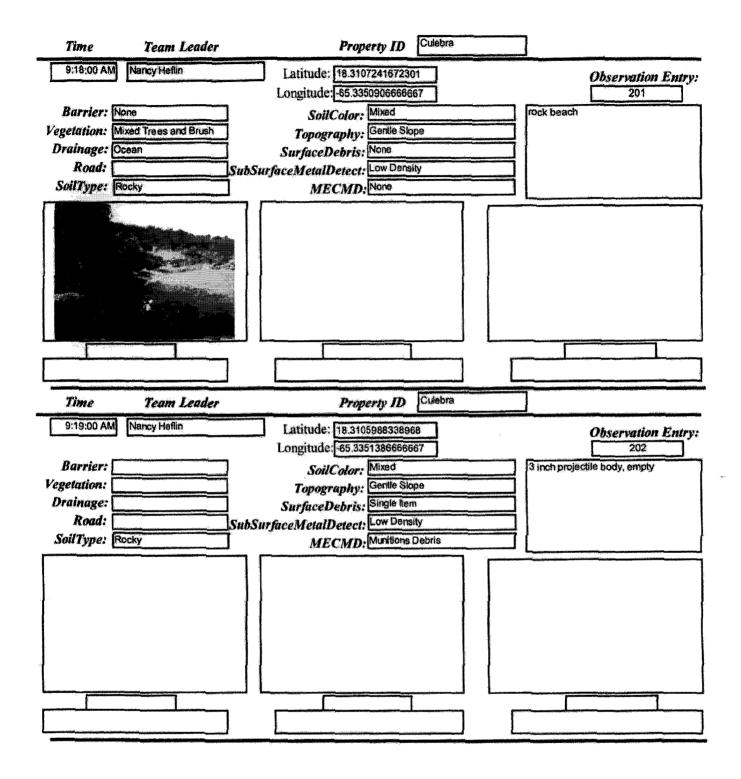

Ć.

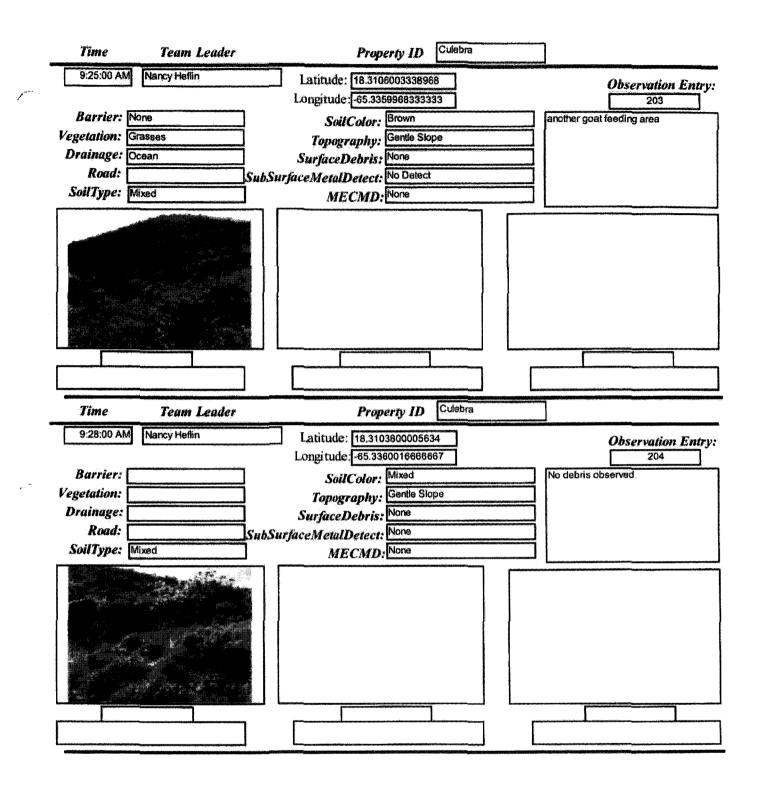


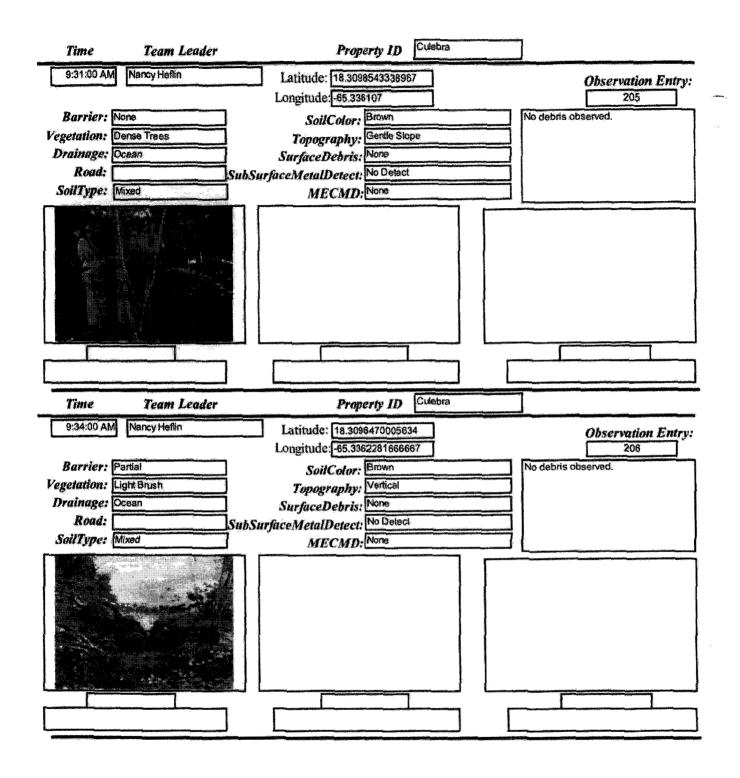




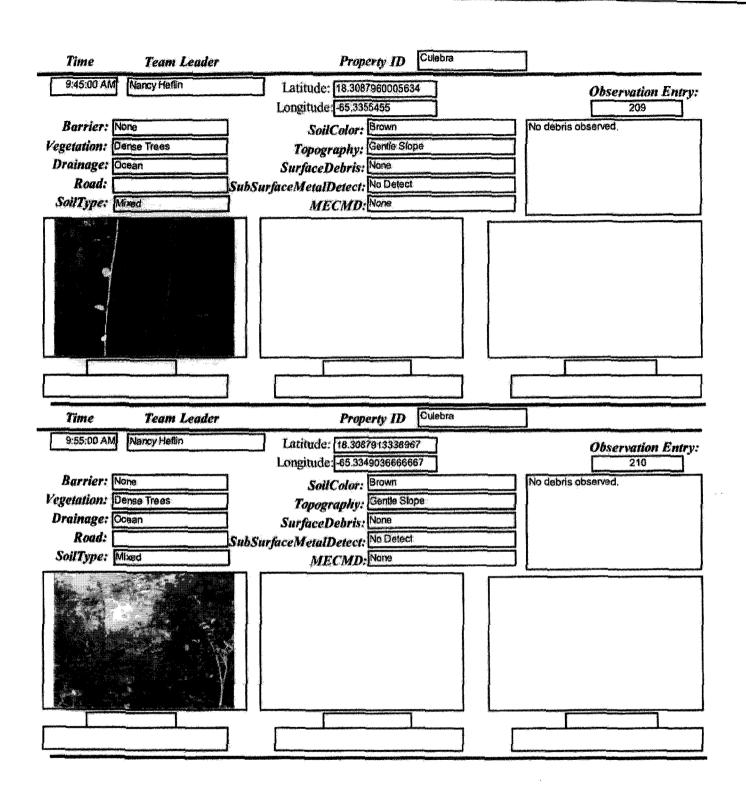


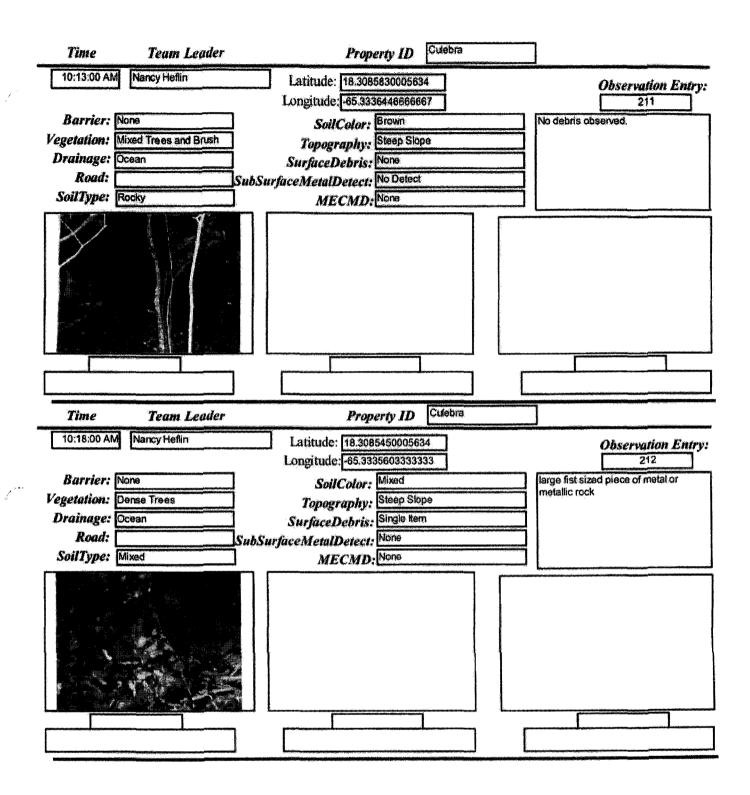


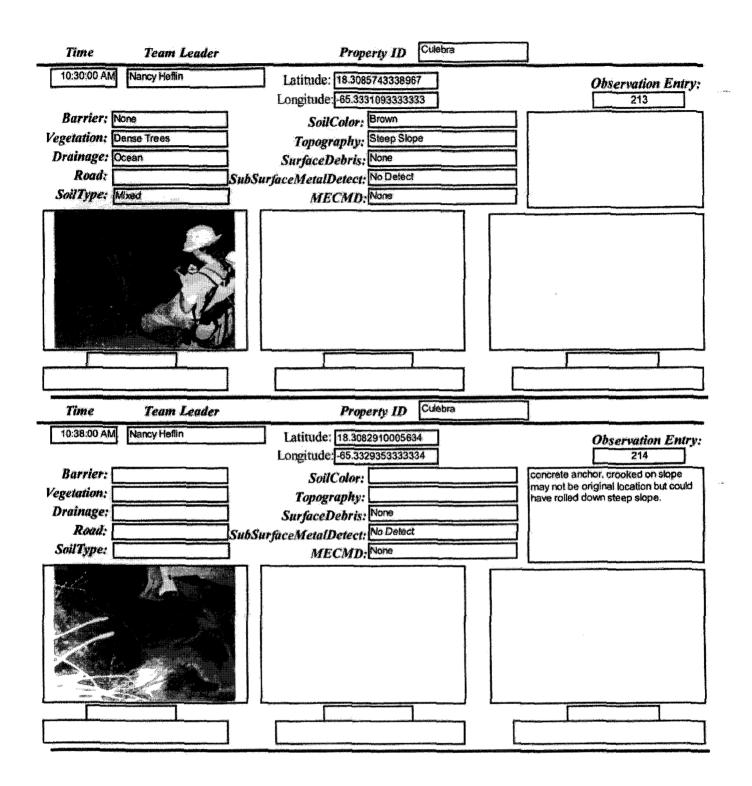


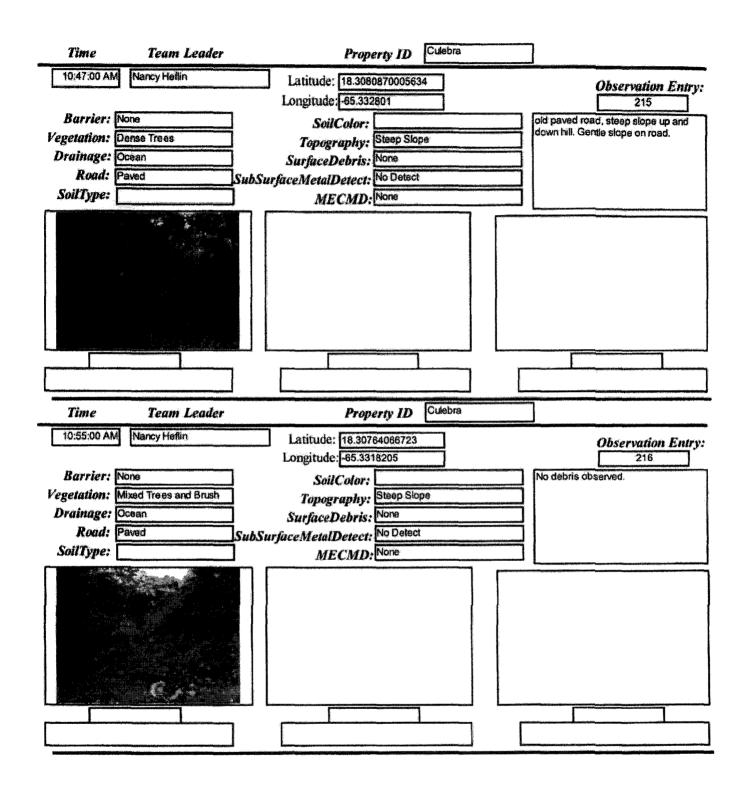


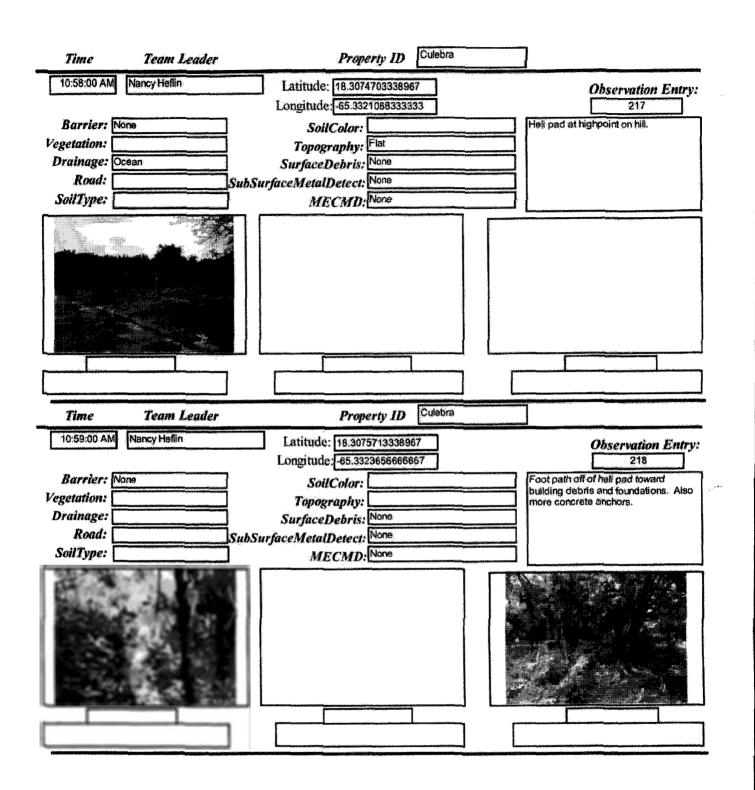
e

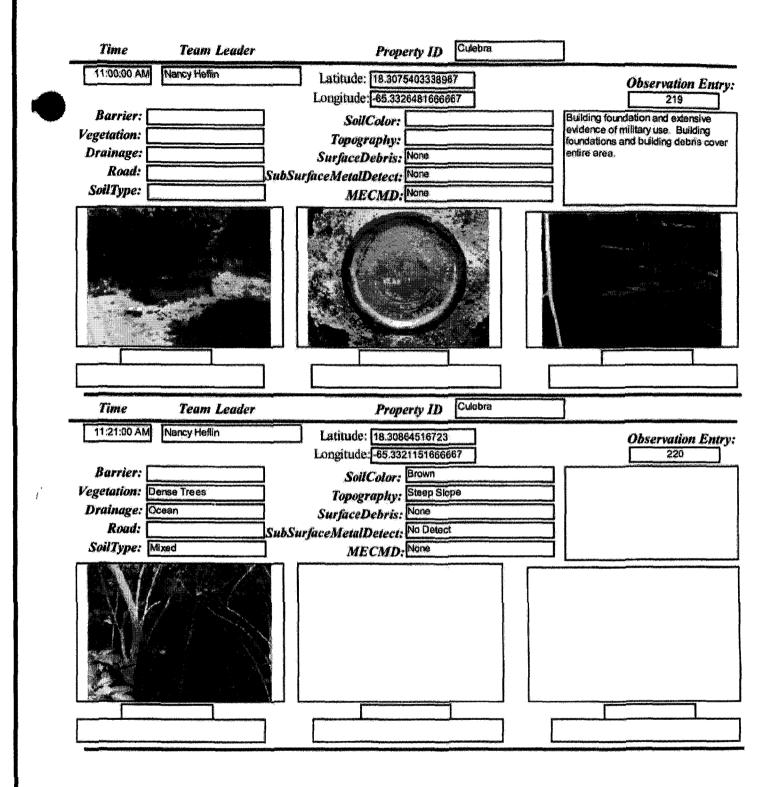


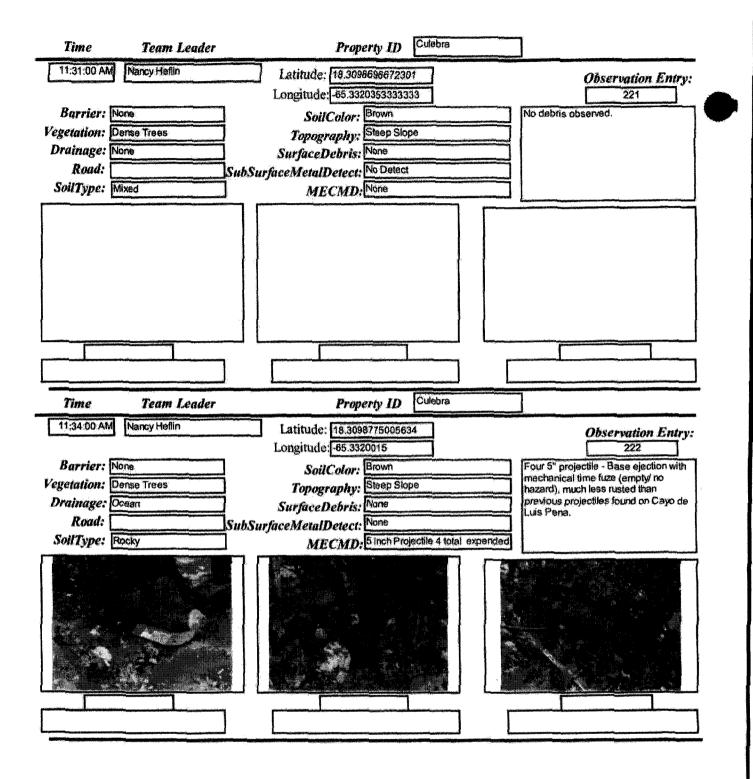


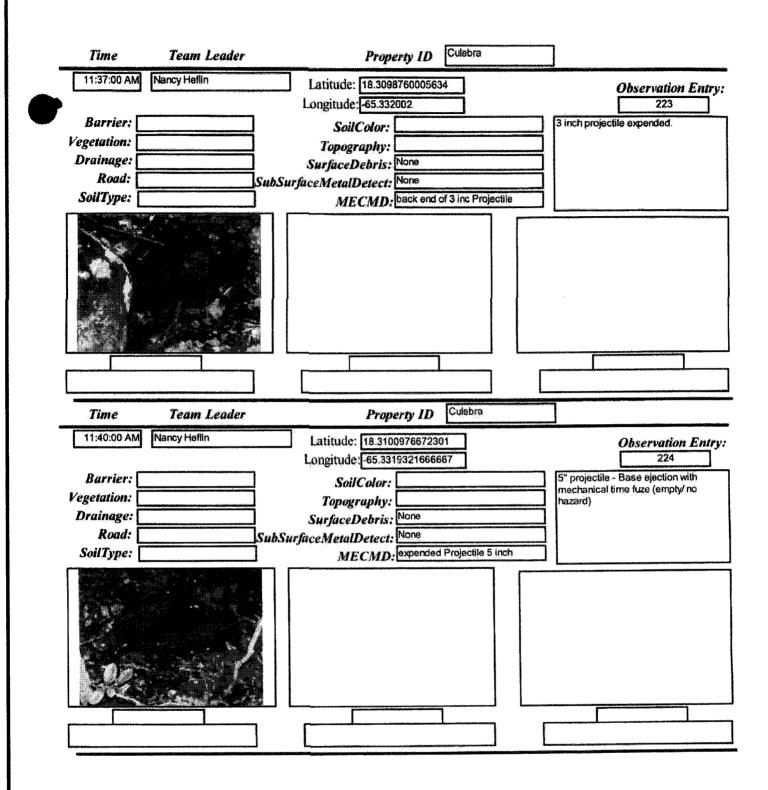


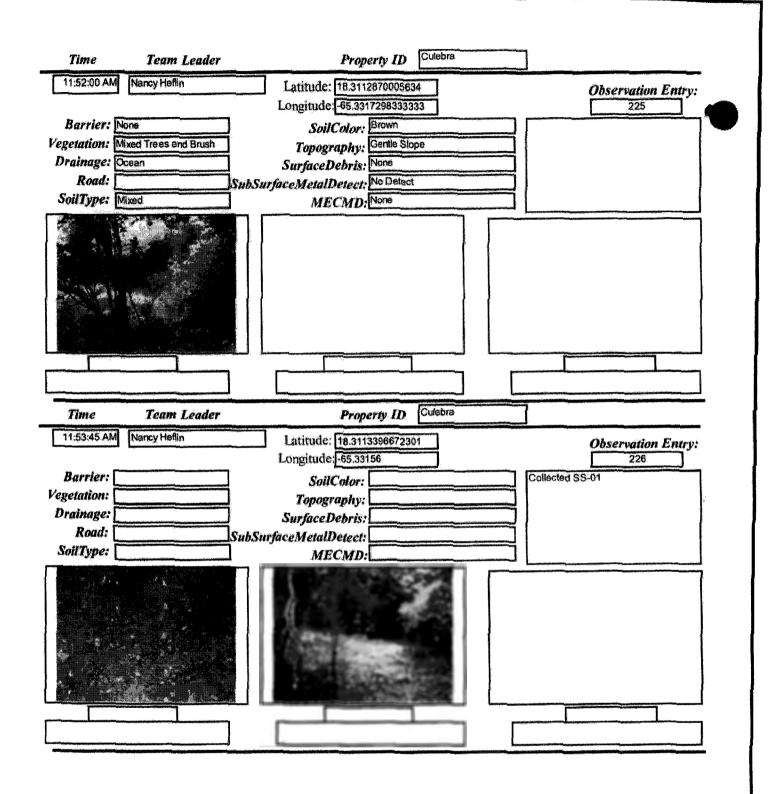


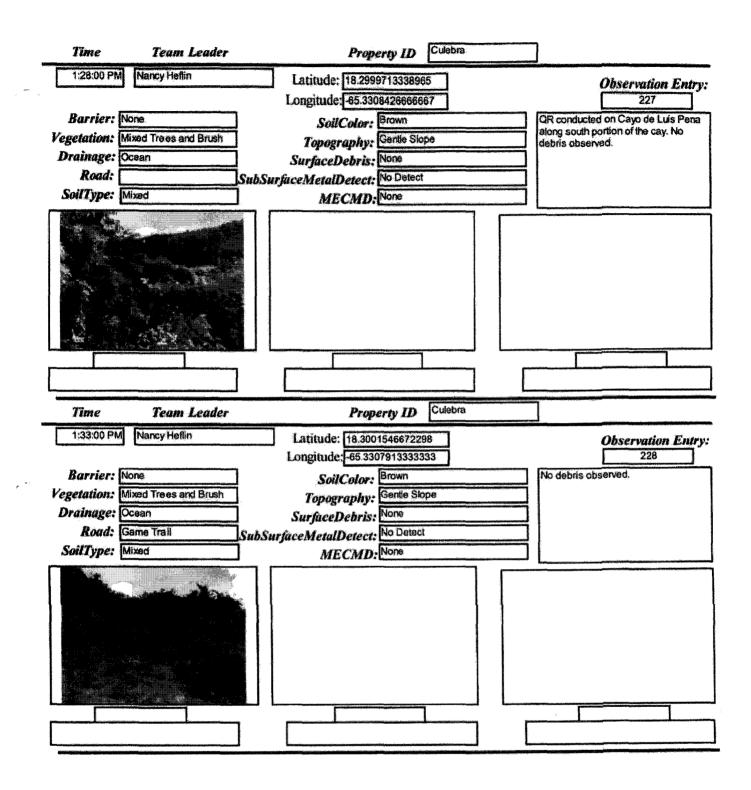


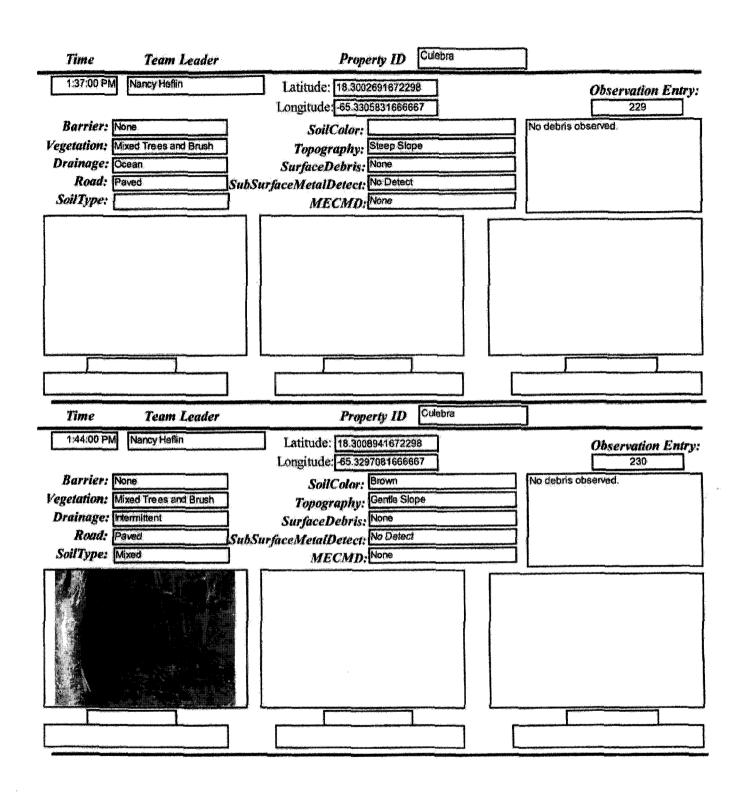


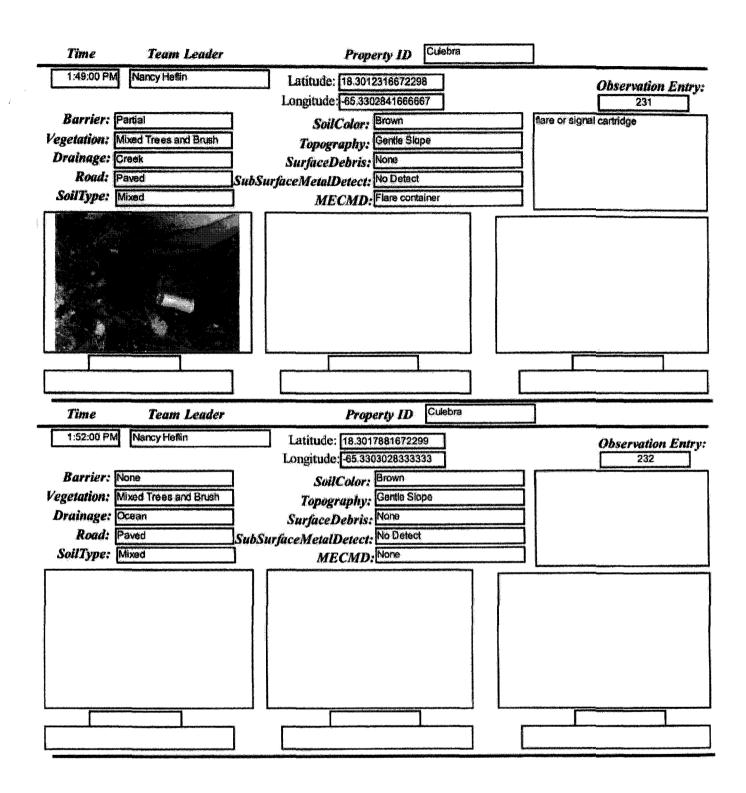


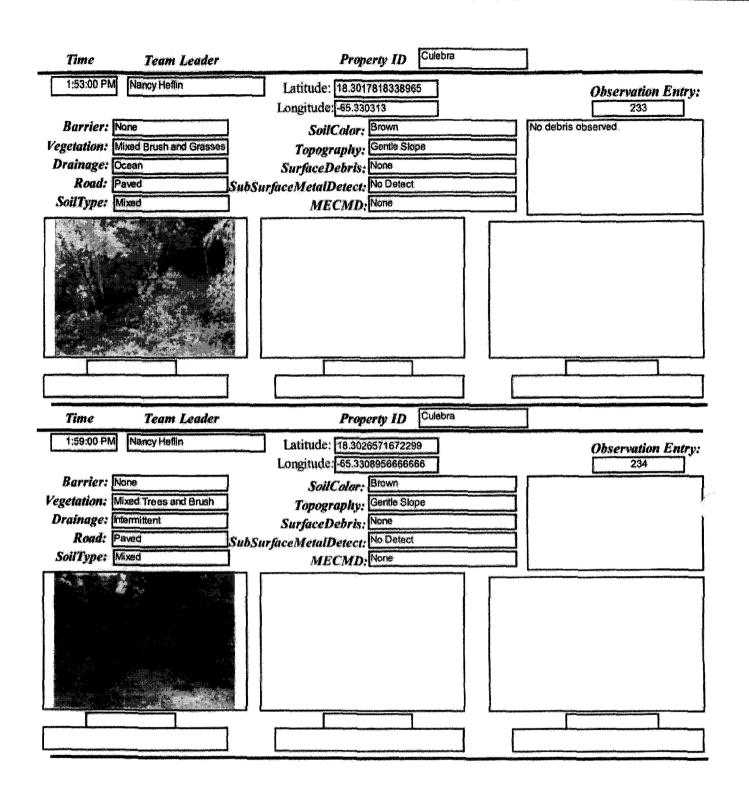


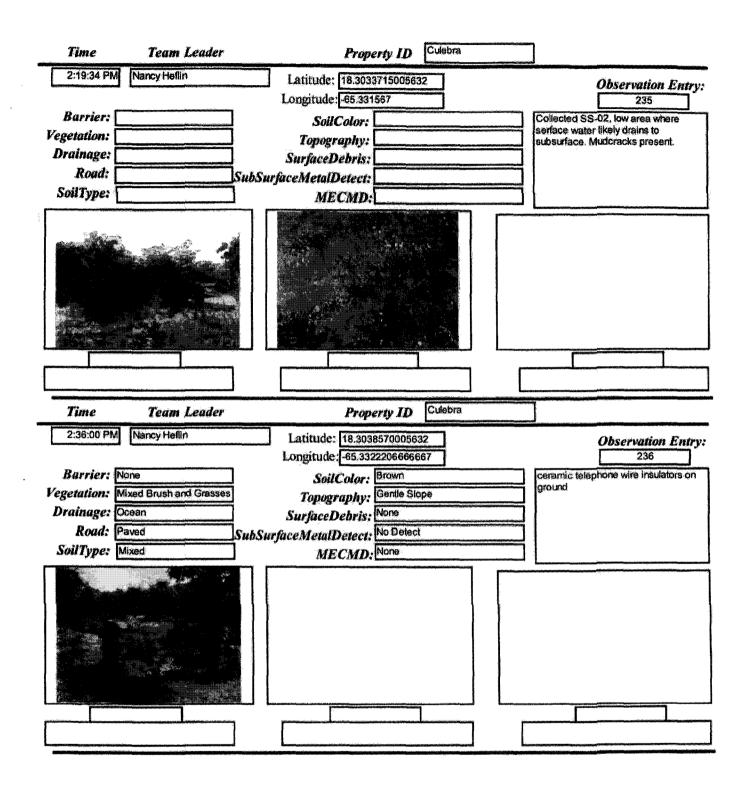


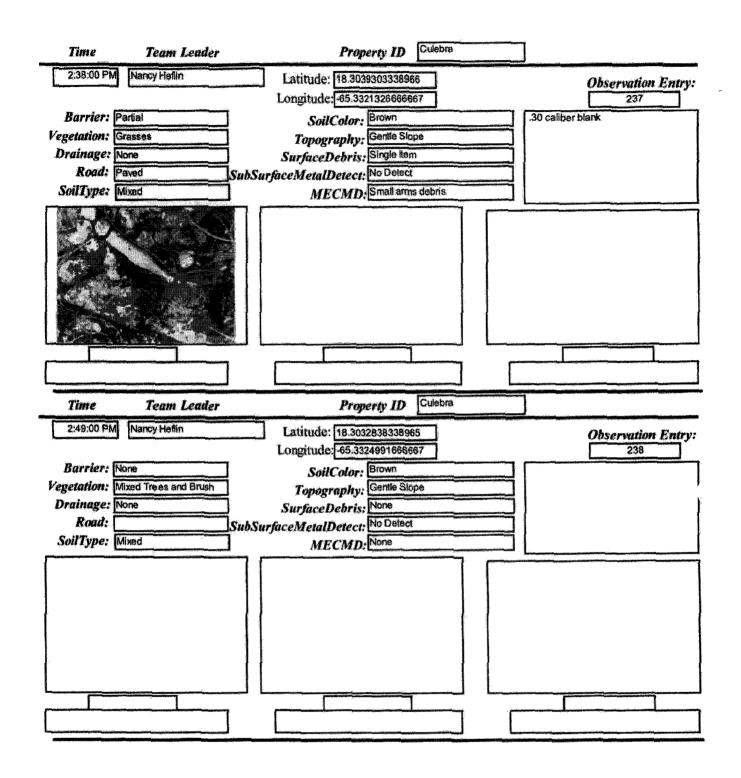

.....

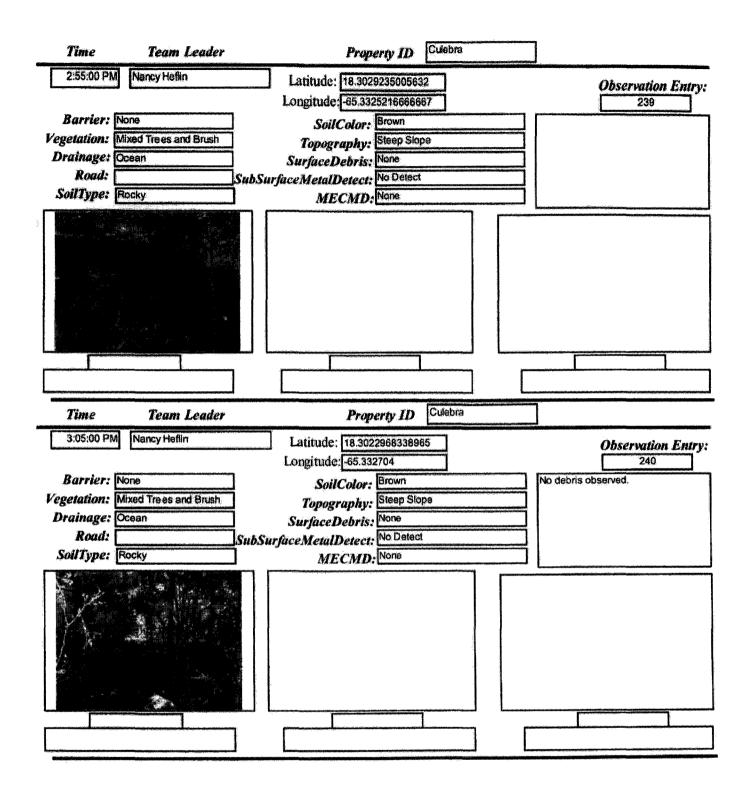


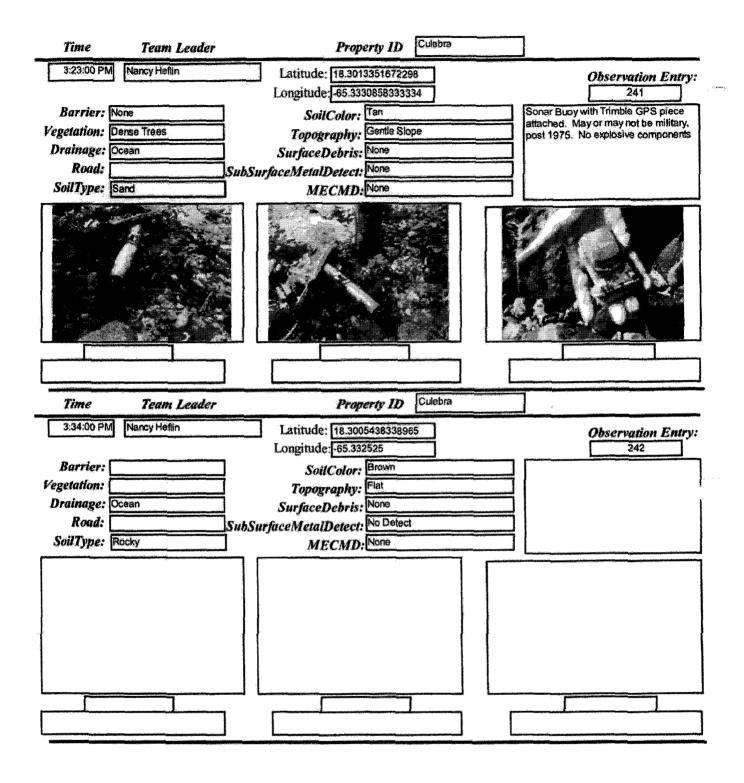


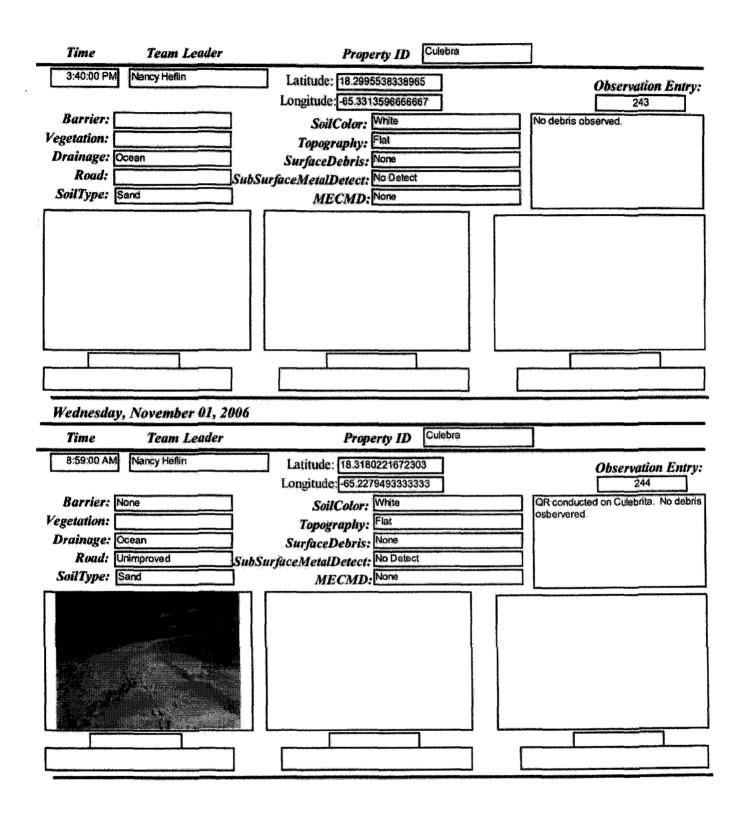

......

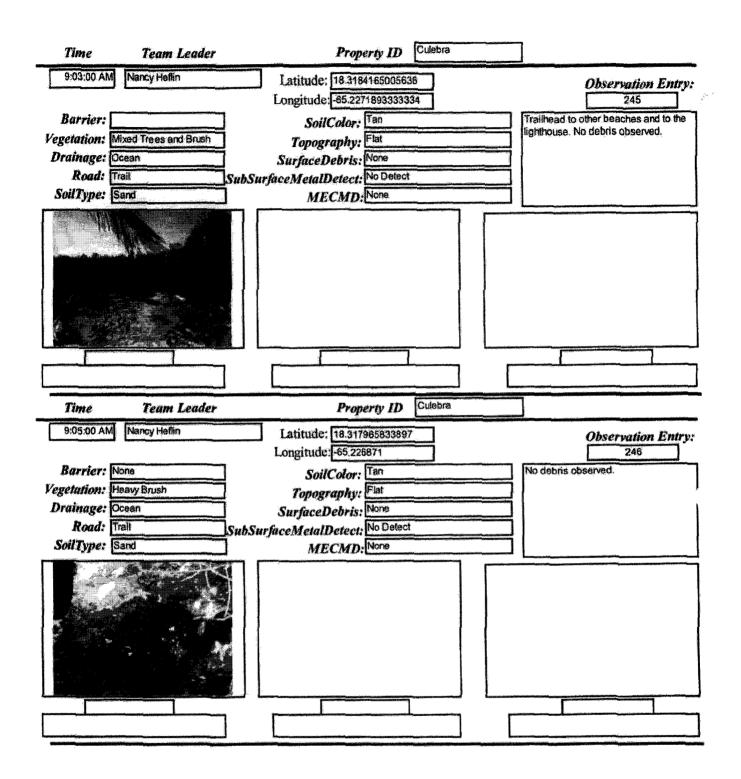


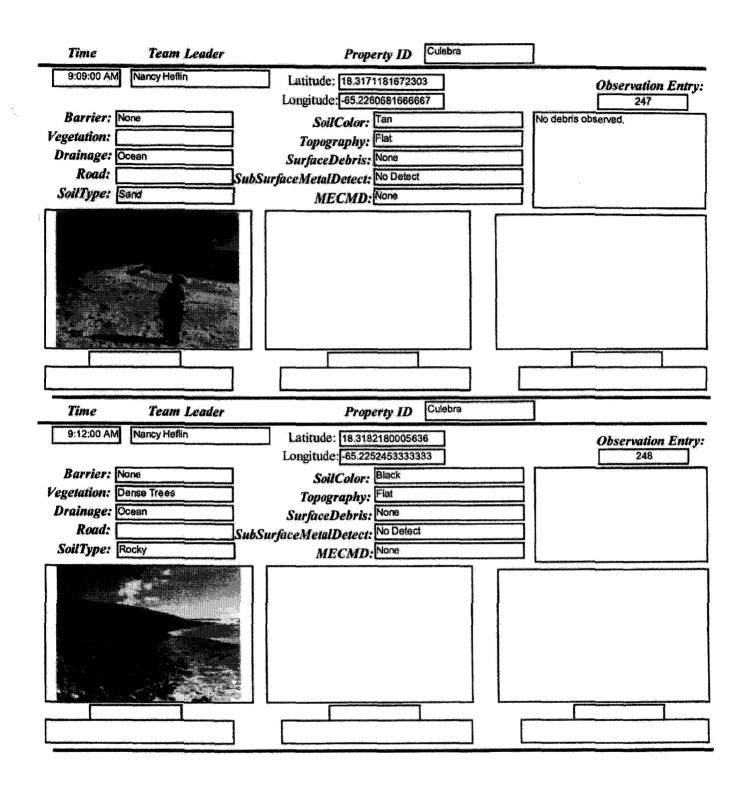


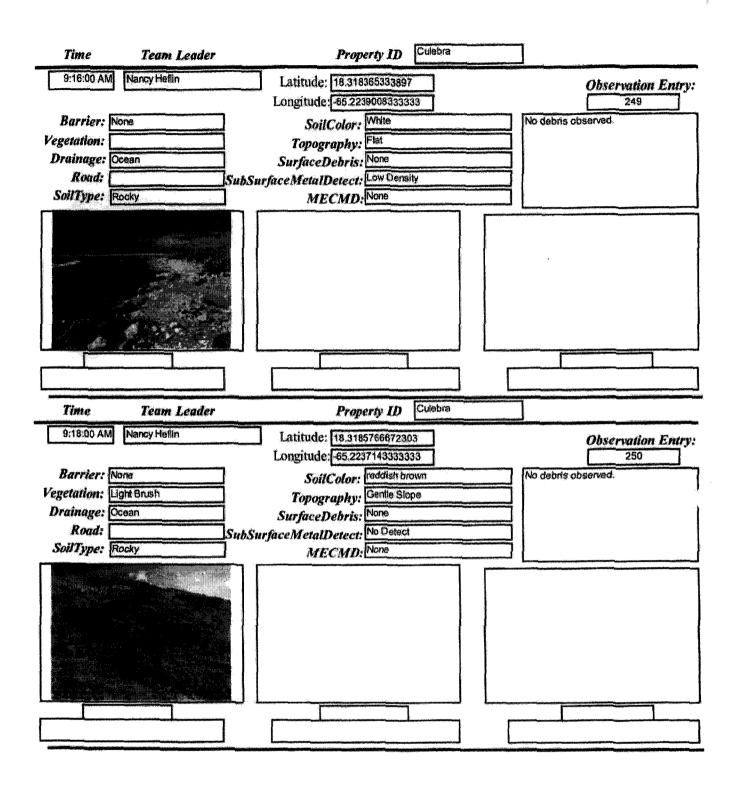


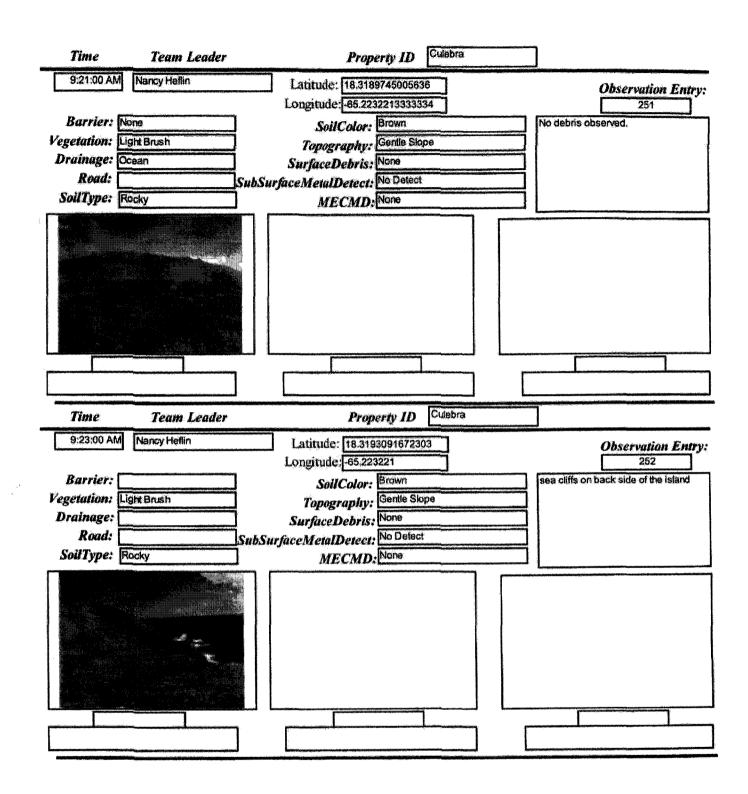


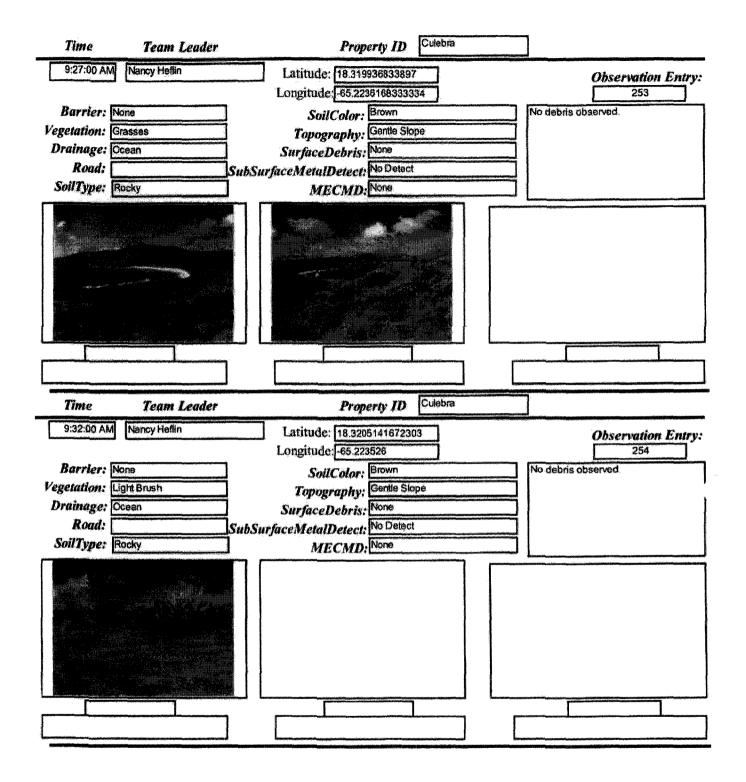


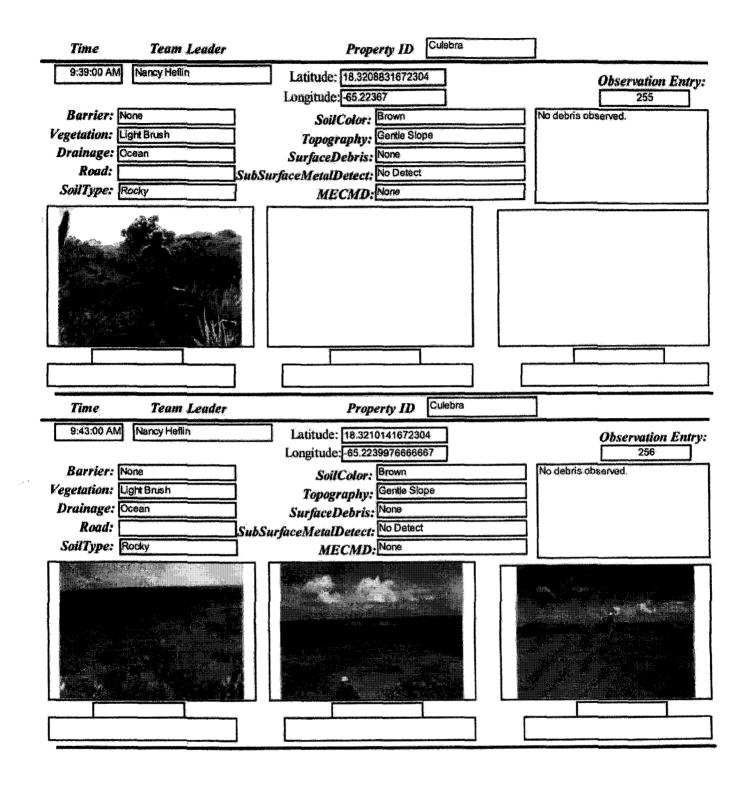


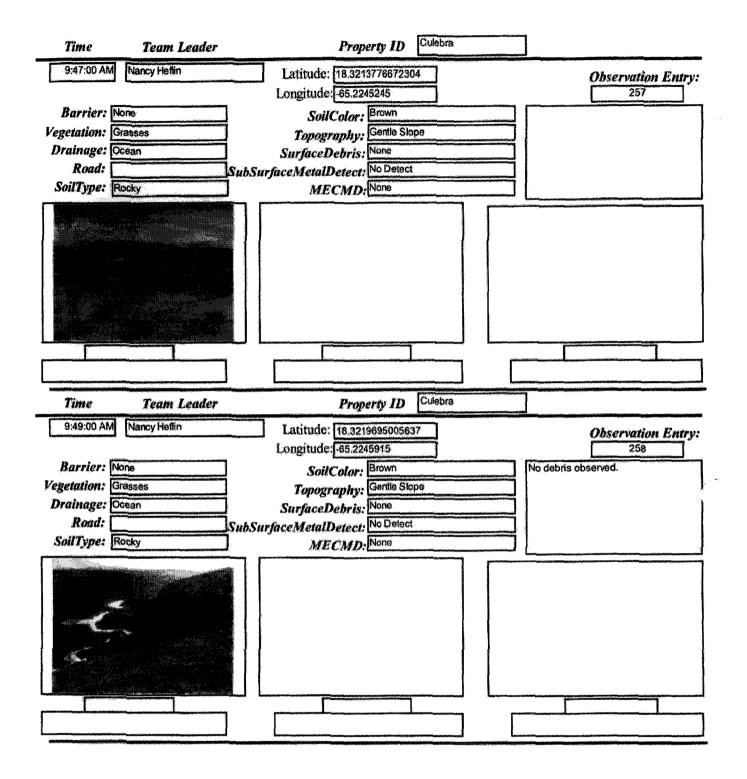


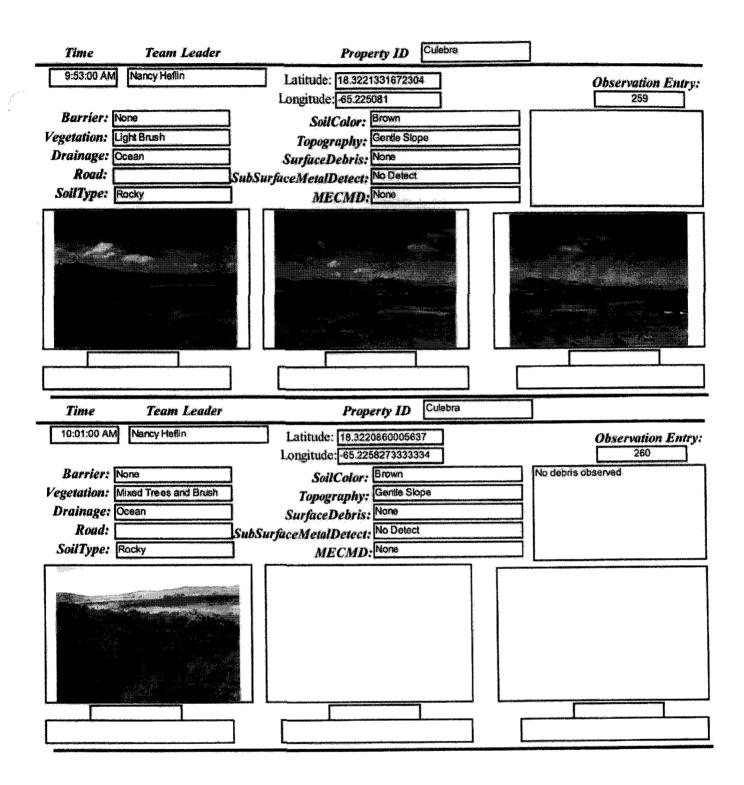


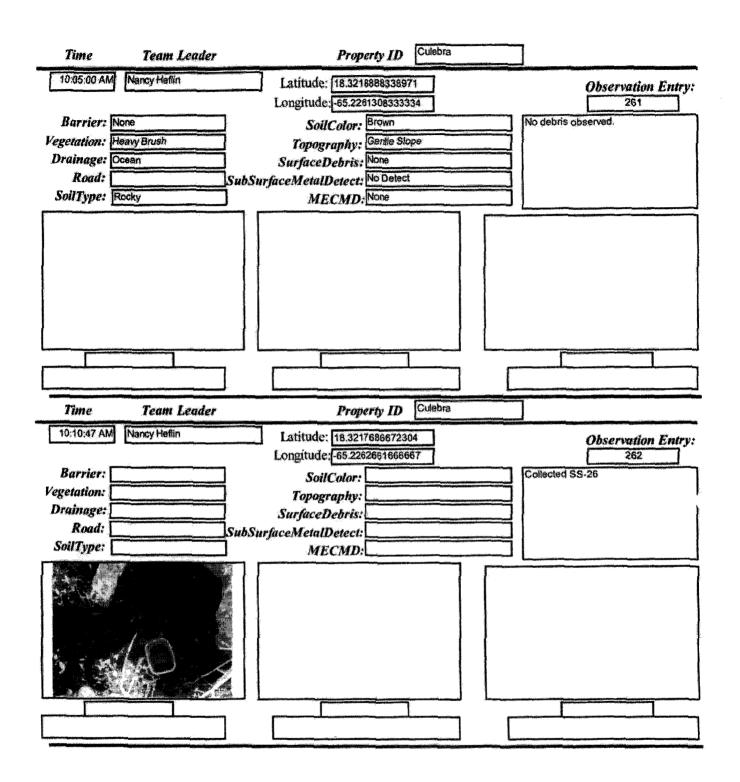


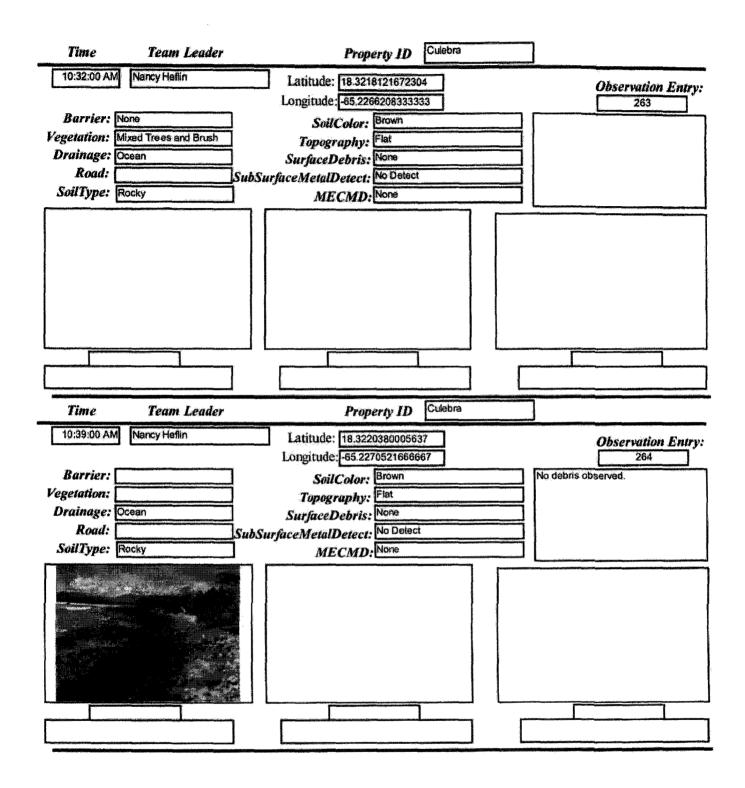


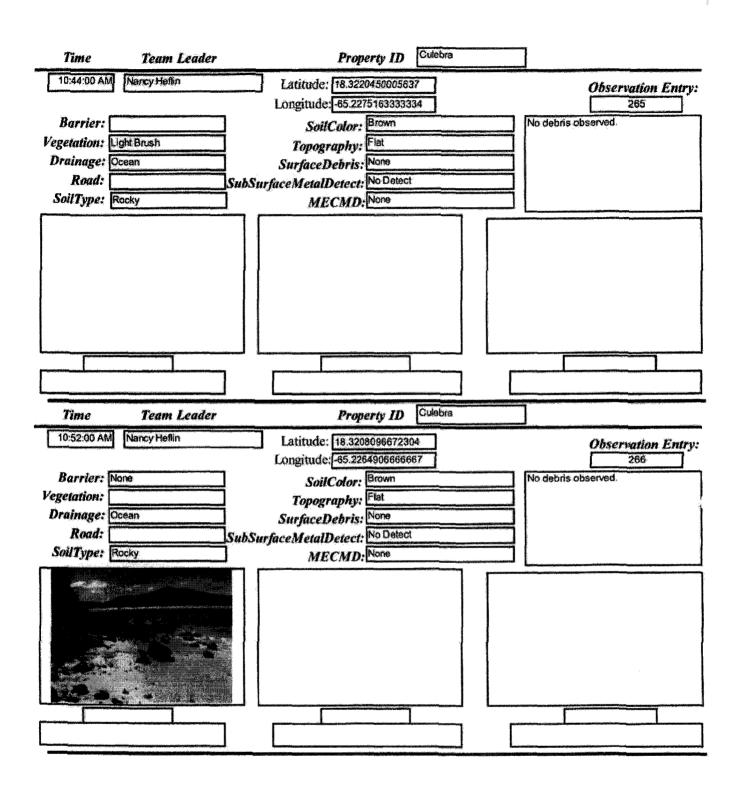


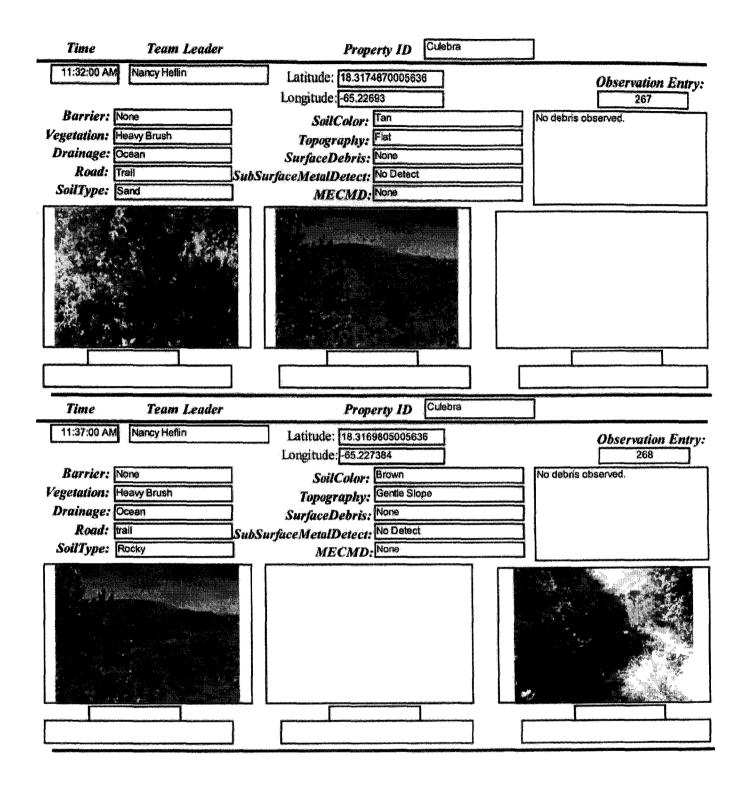


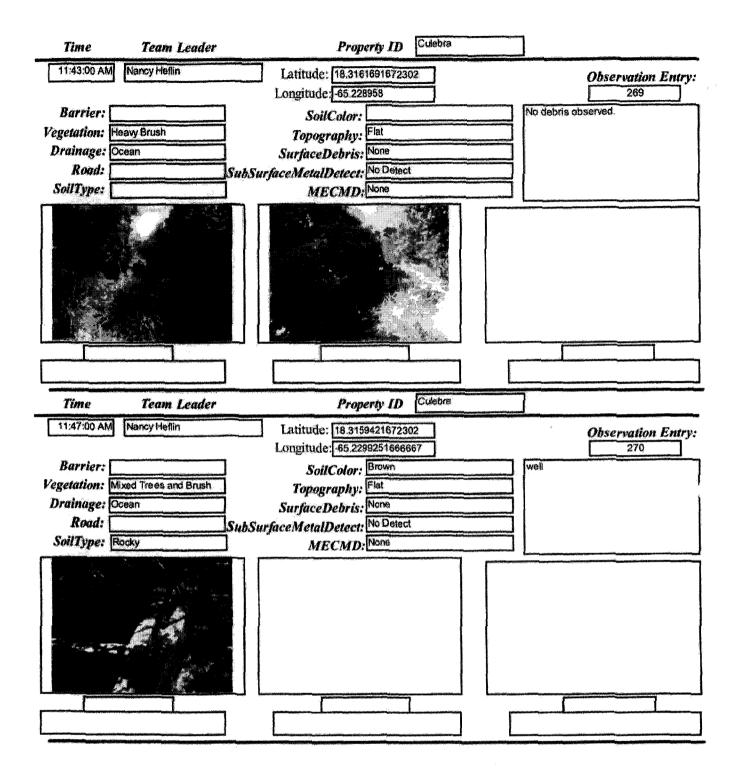


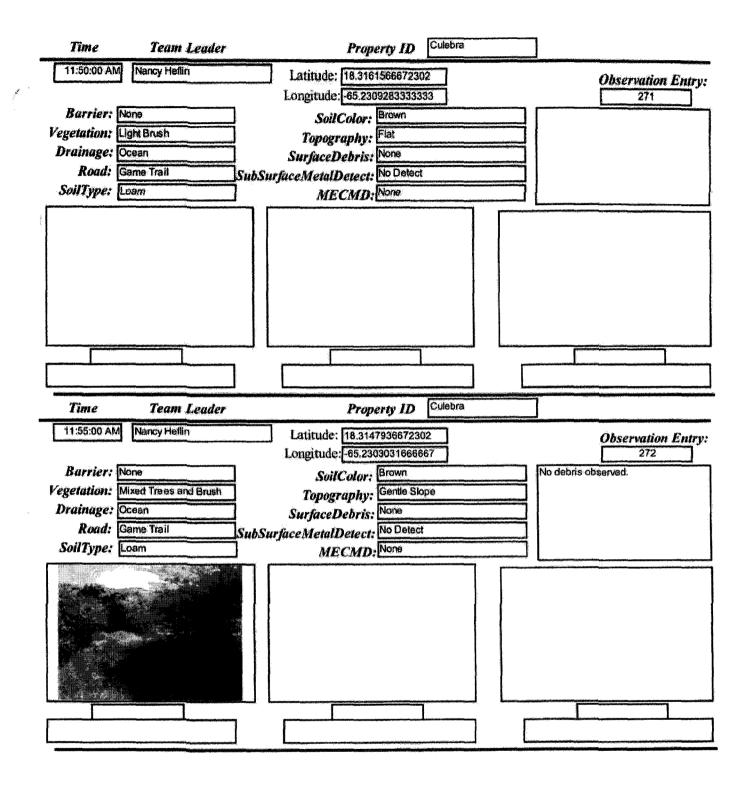


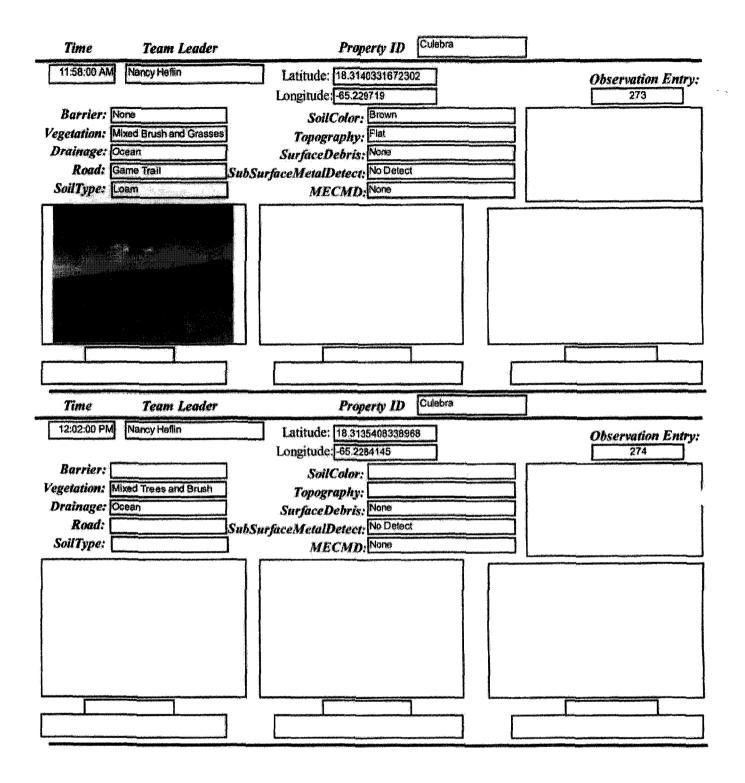


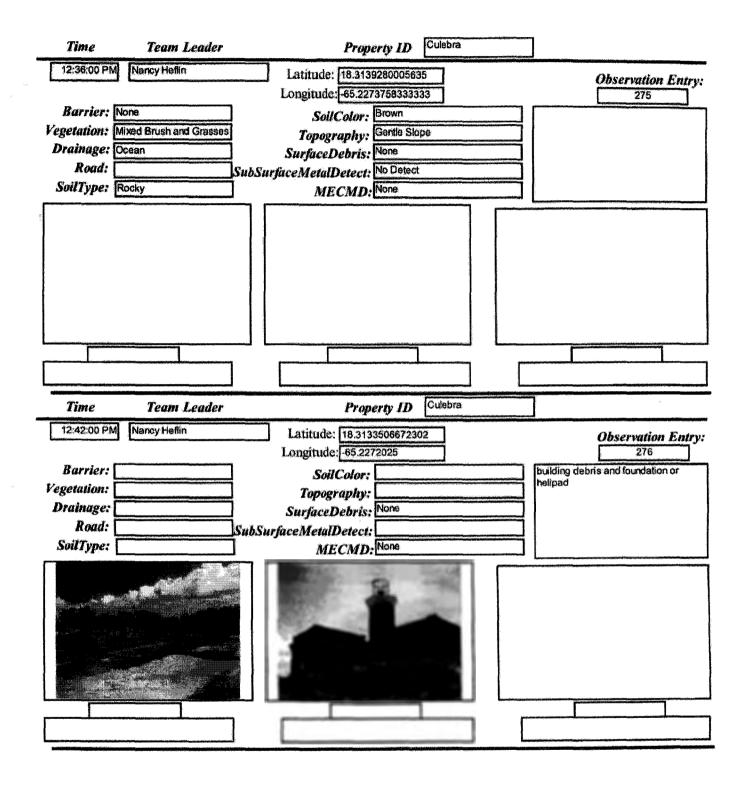


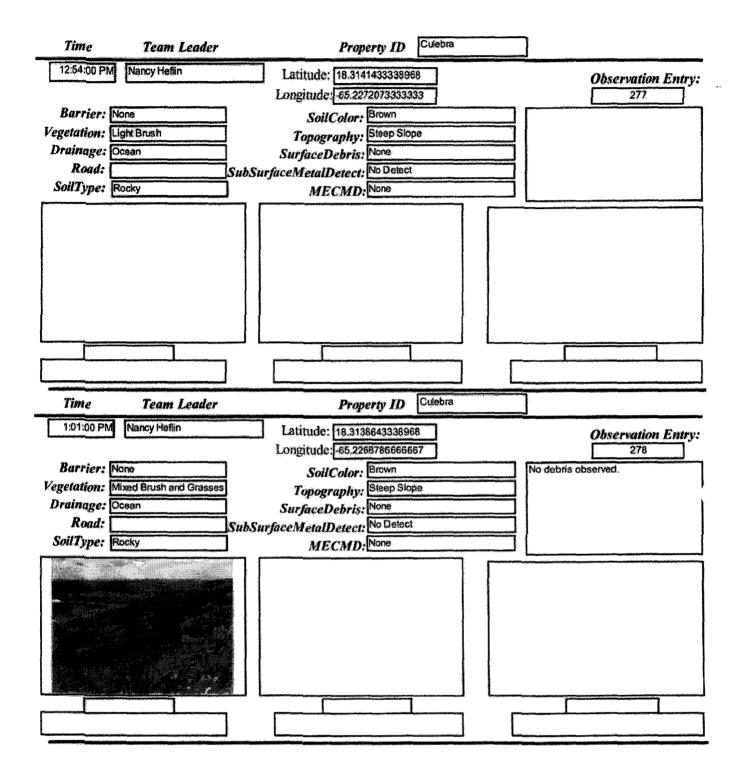


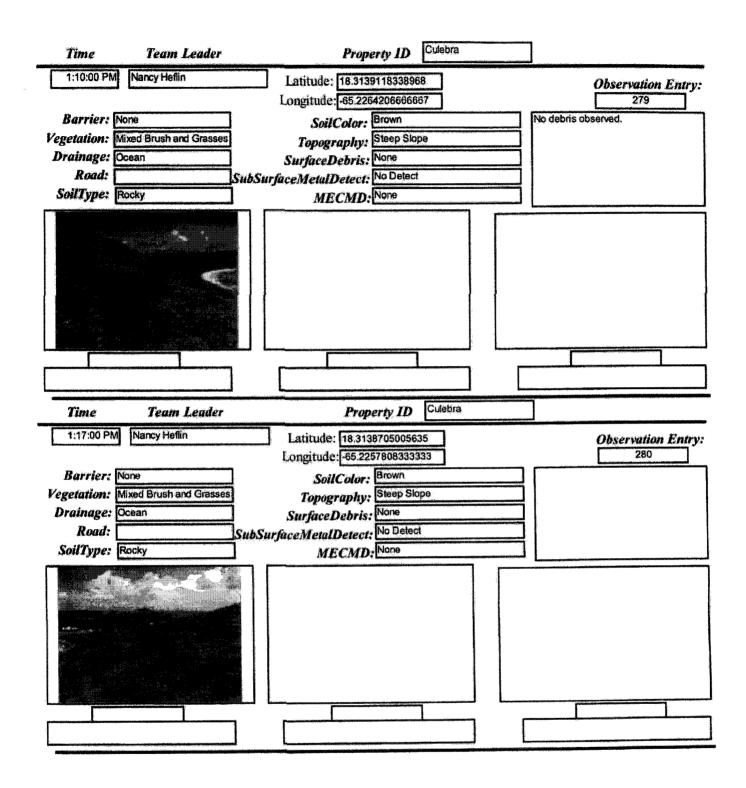


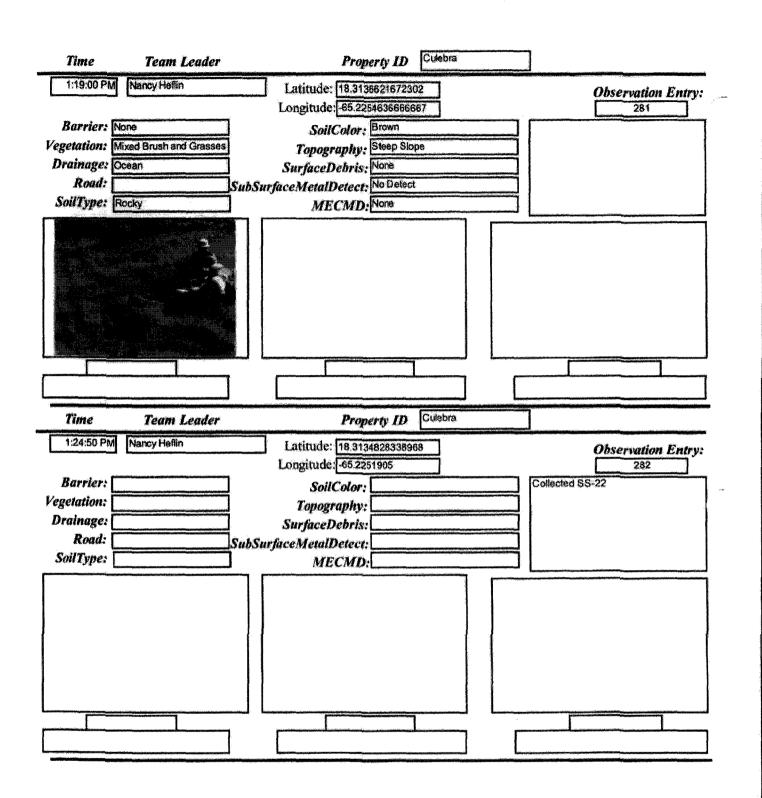


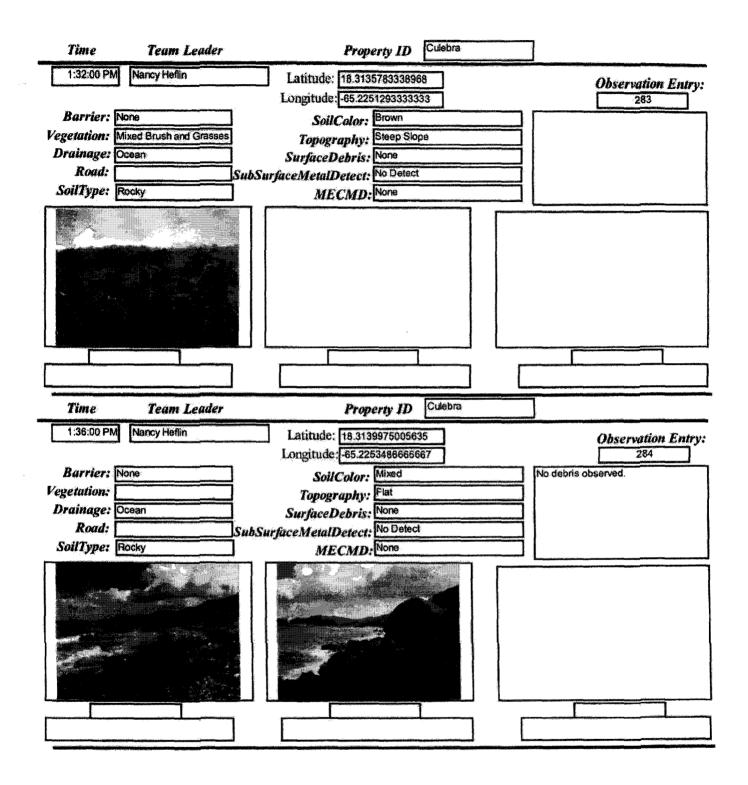


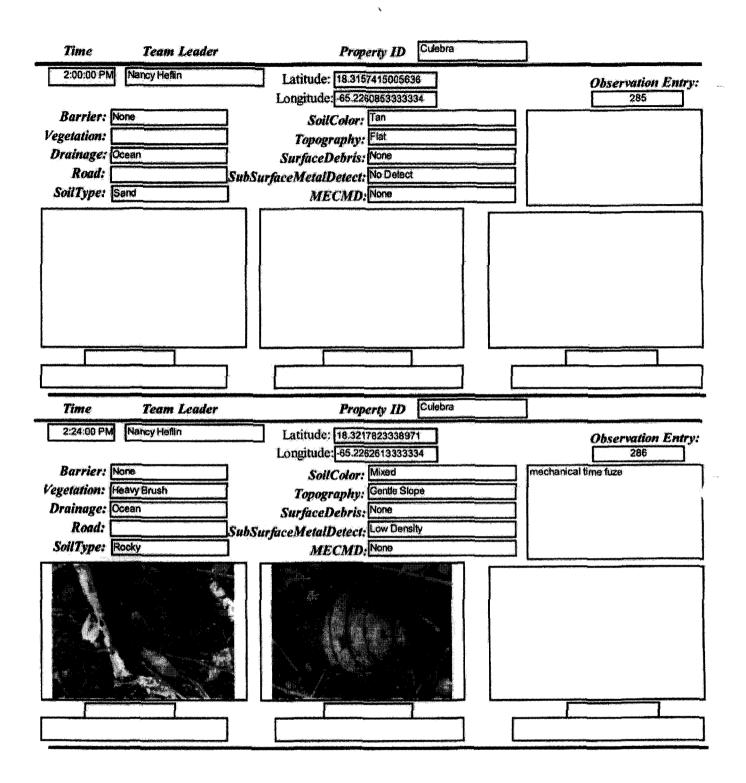


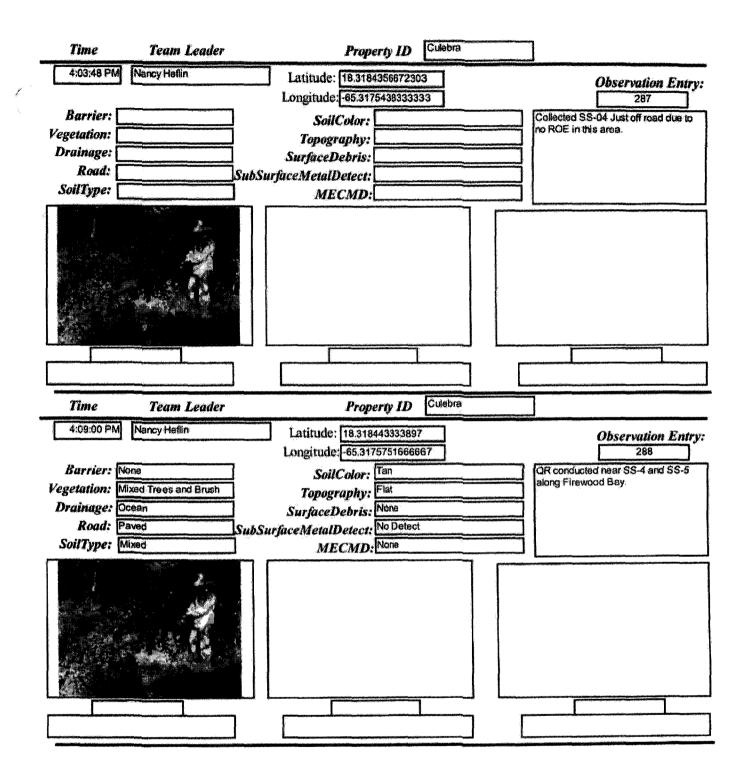


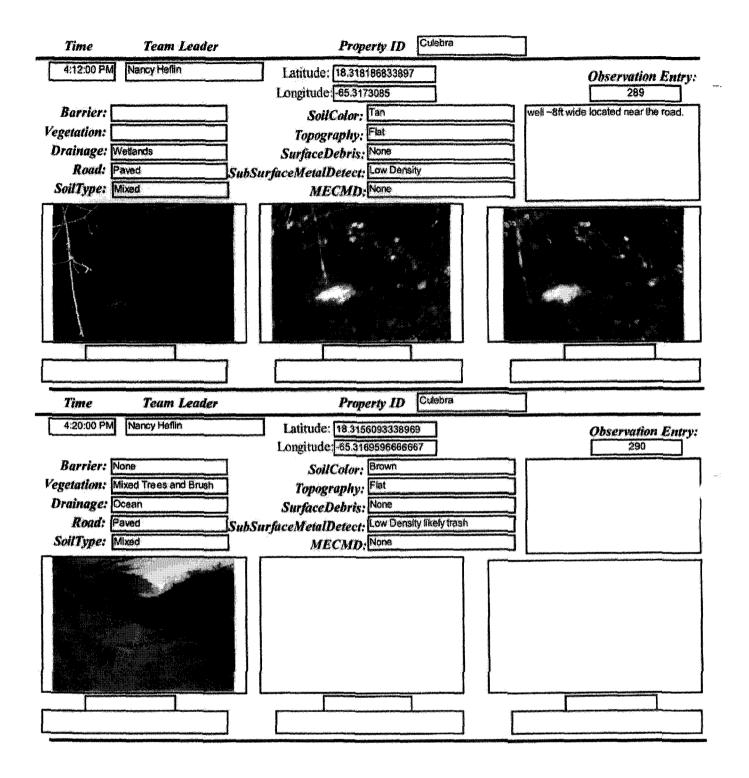


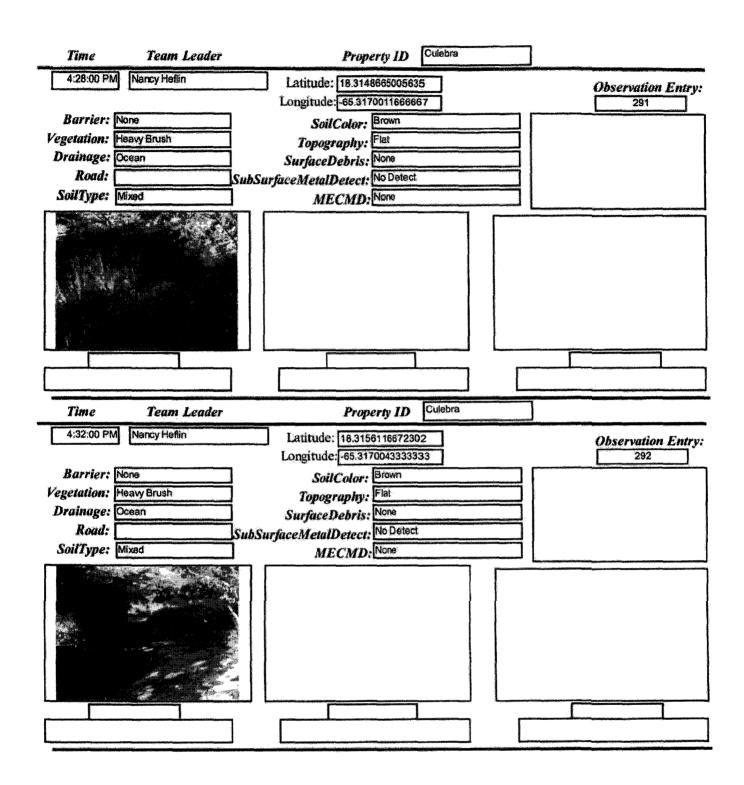


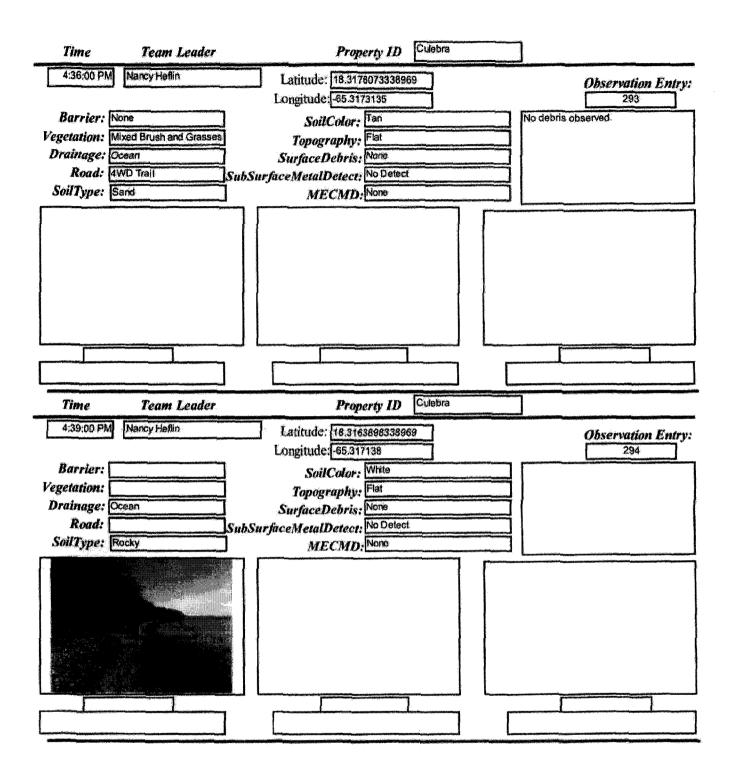


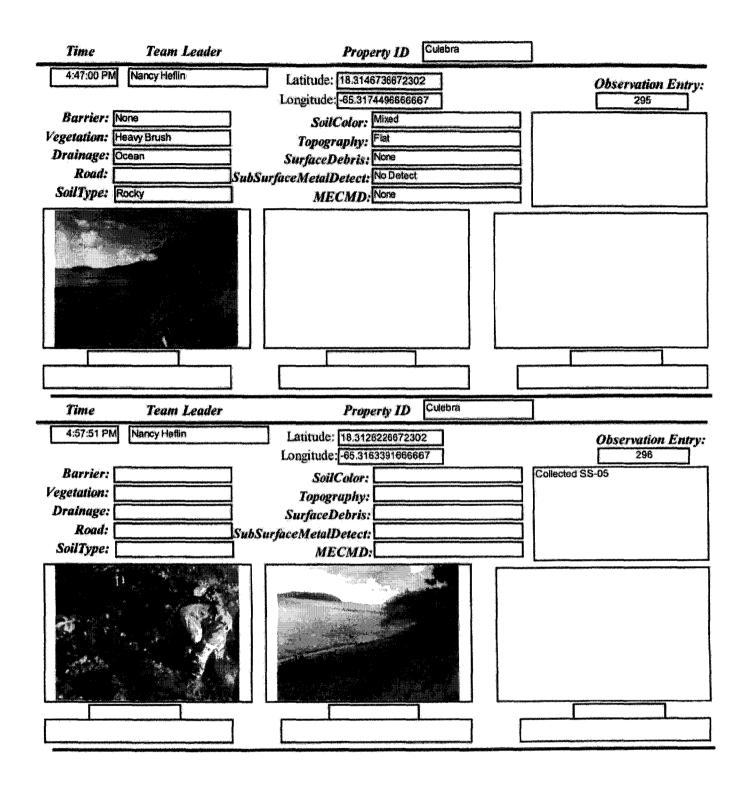


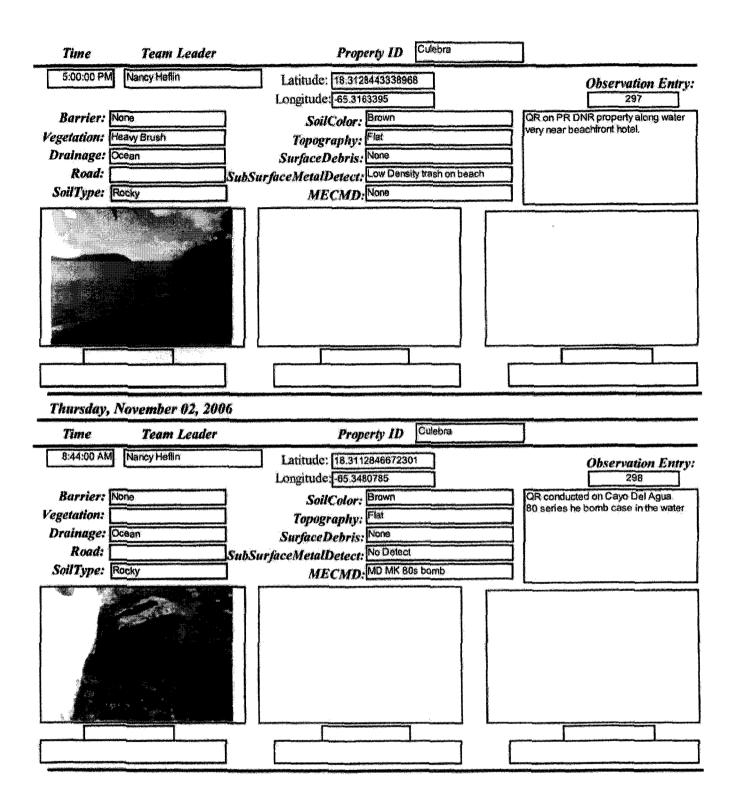


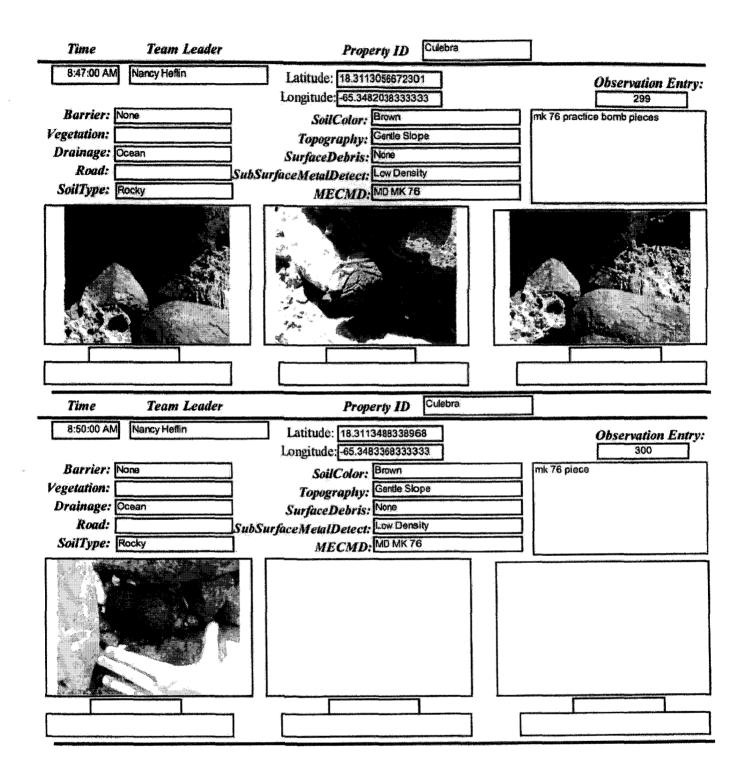


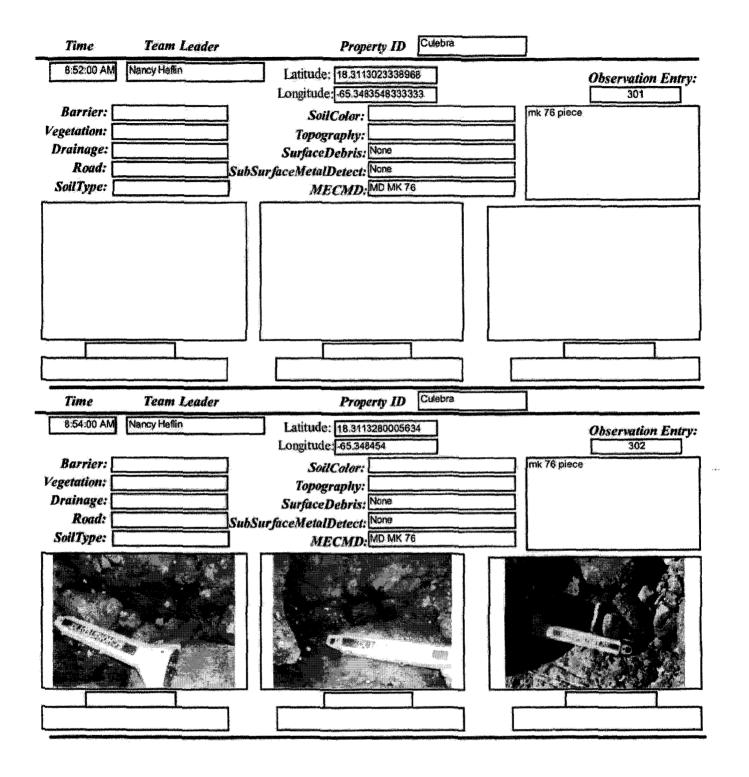


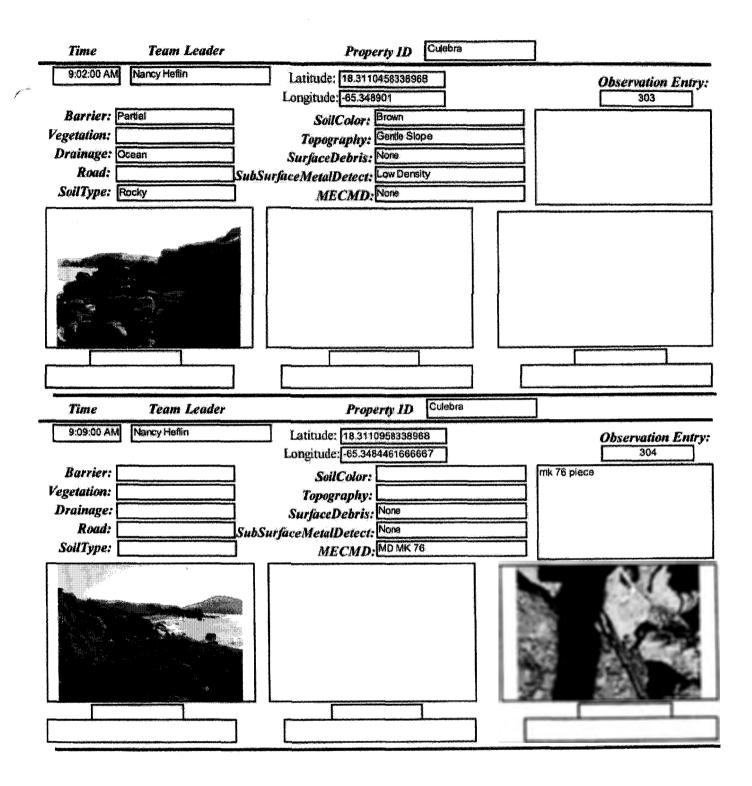


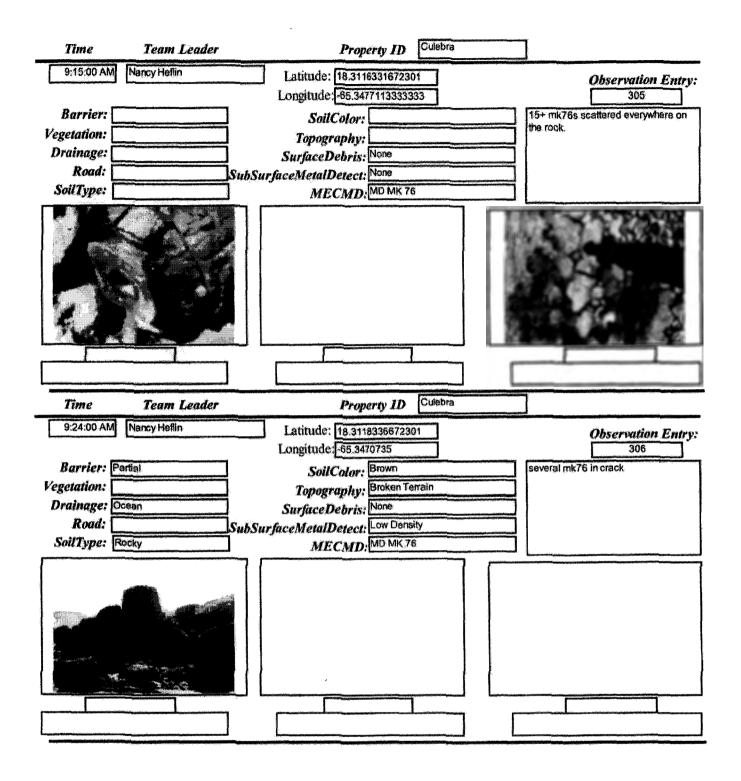

s ná

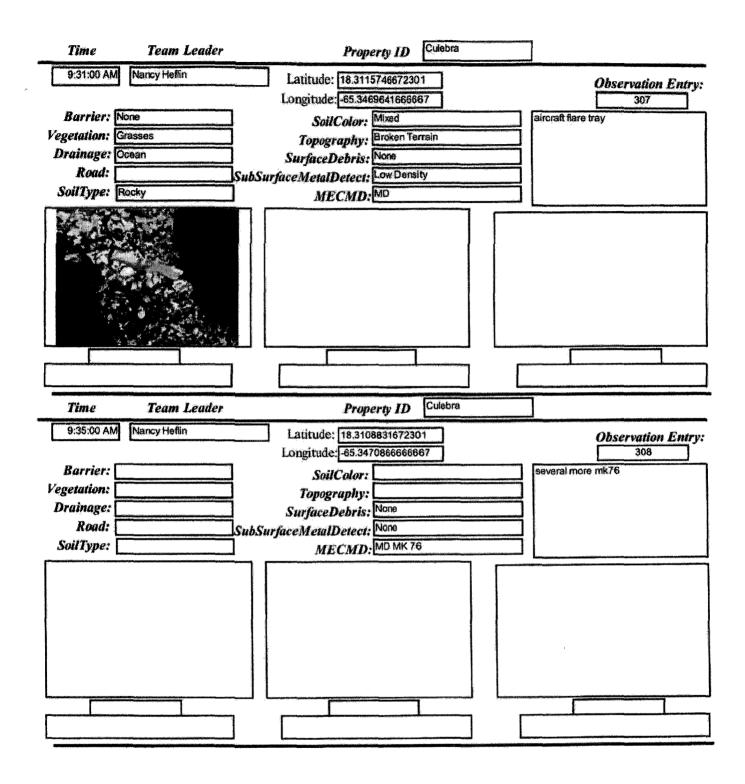


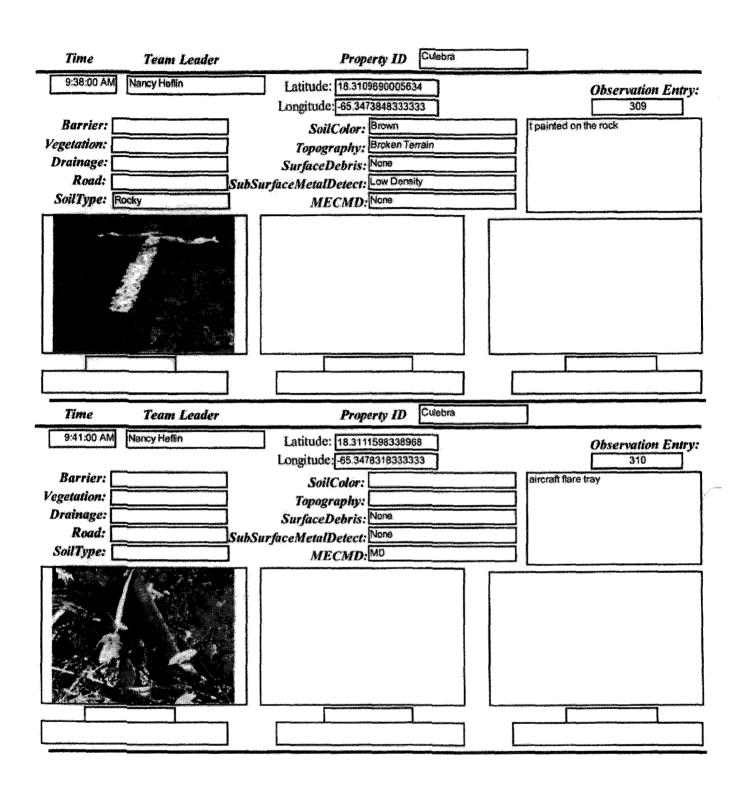


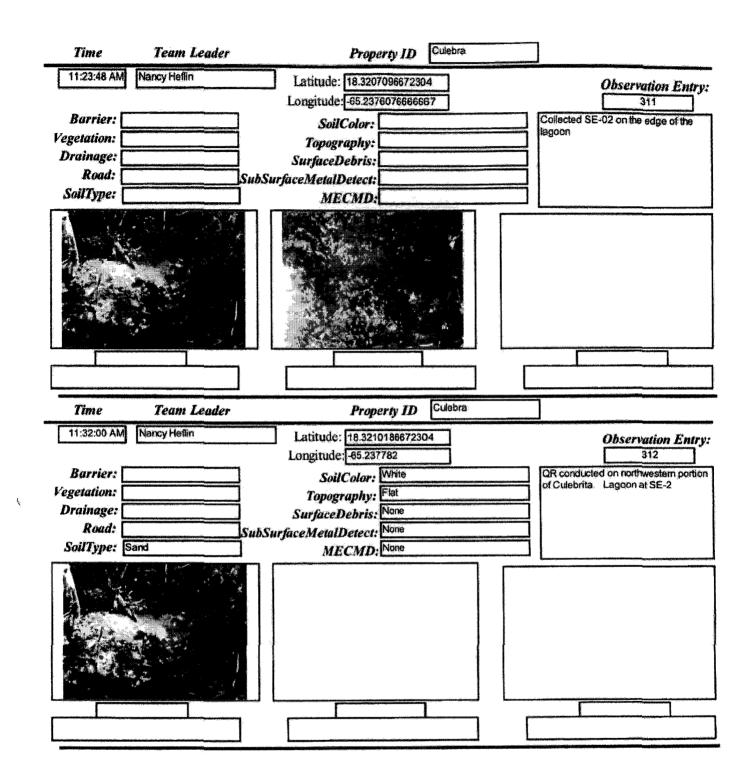


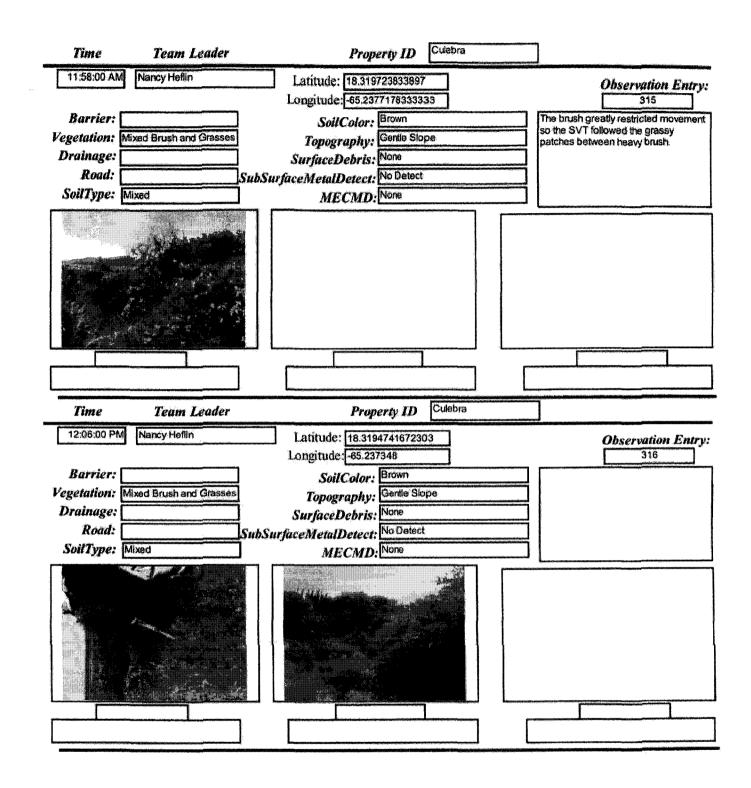


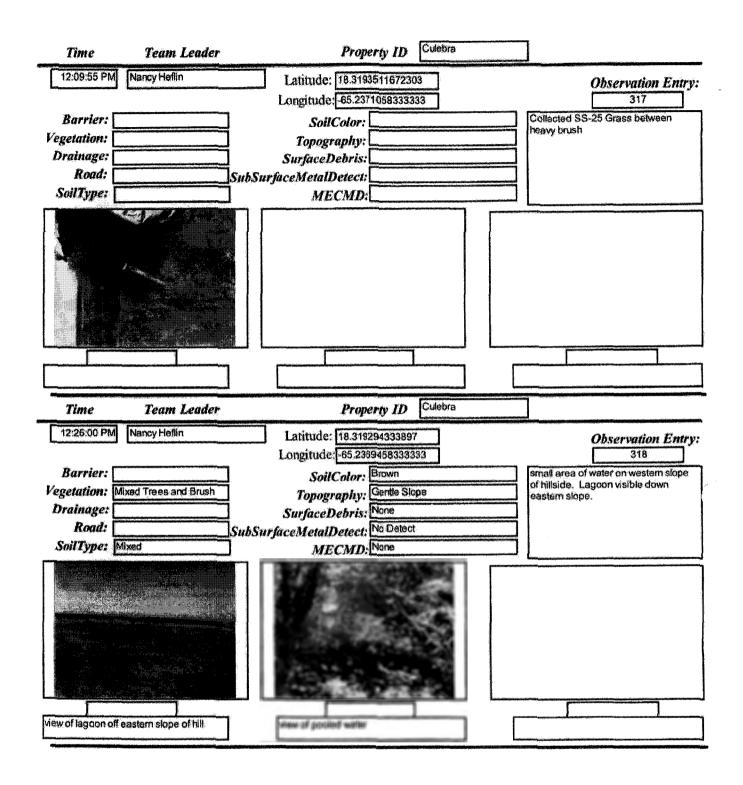


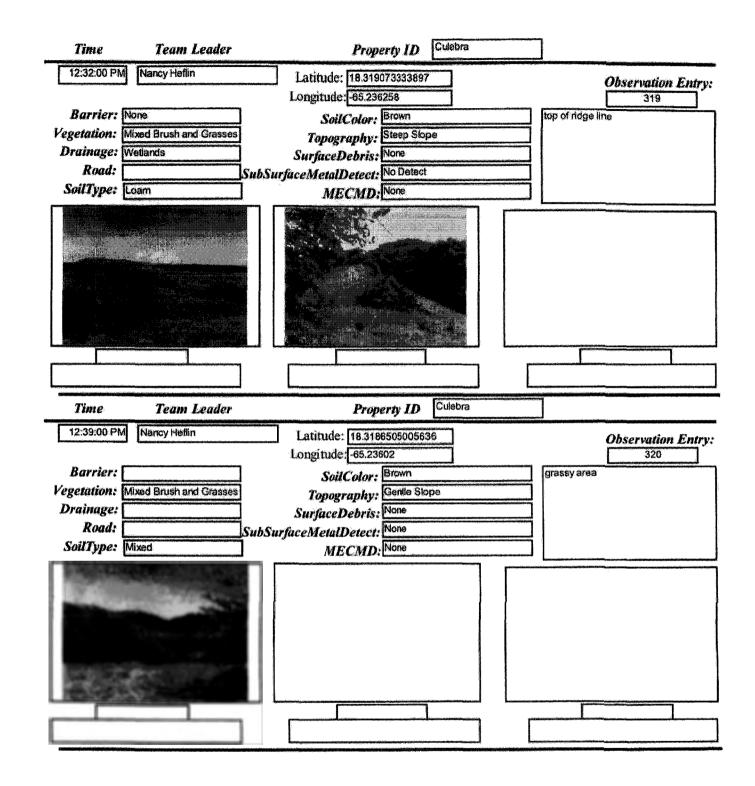


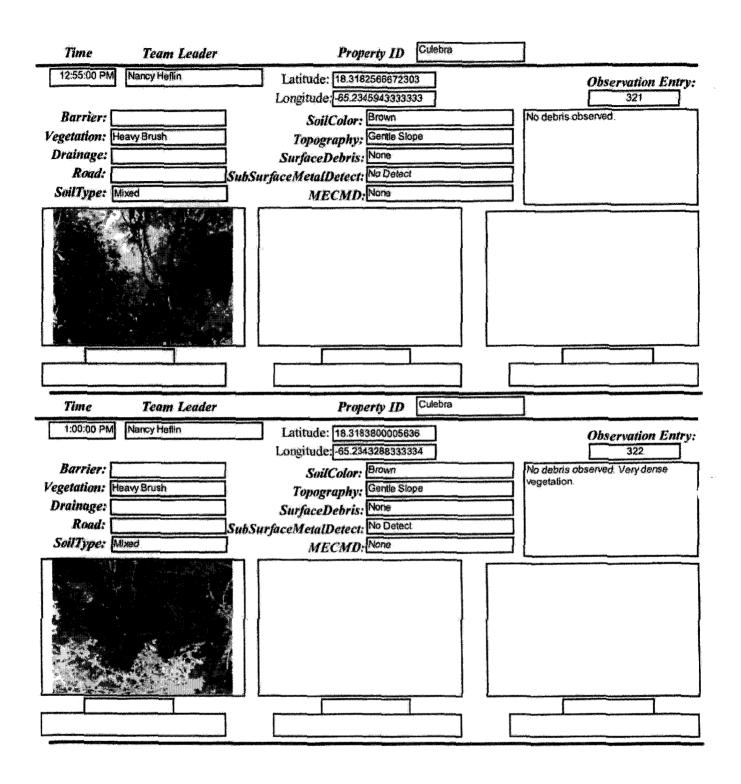

Delivery Order 0008

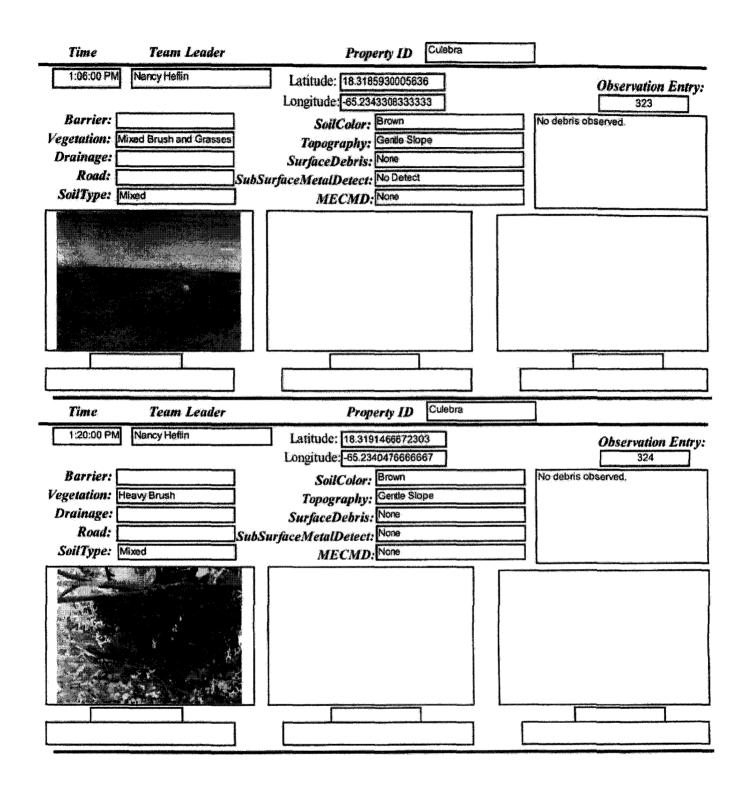


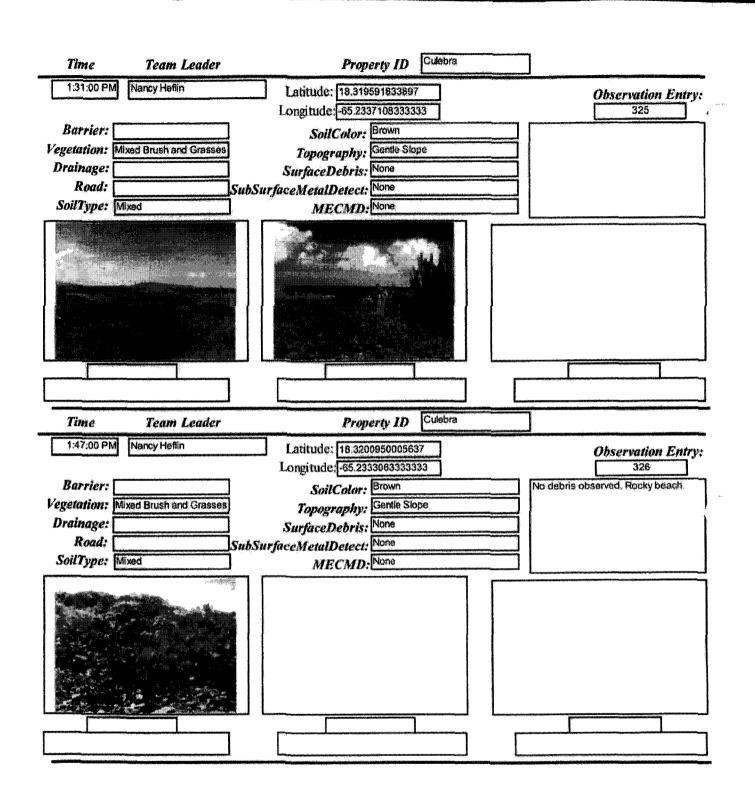


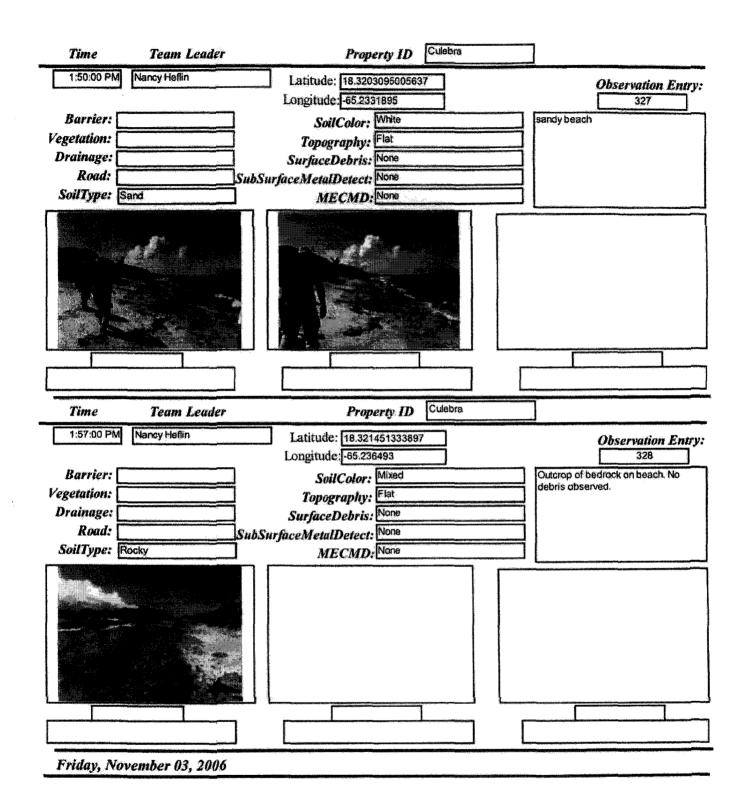


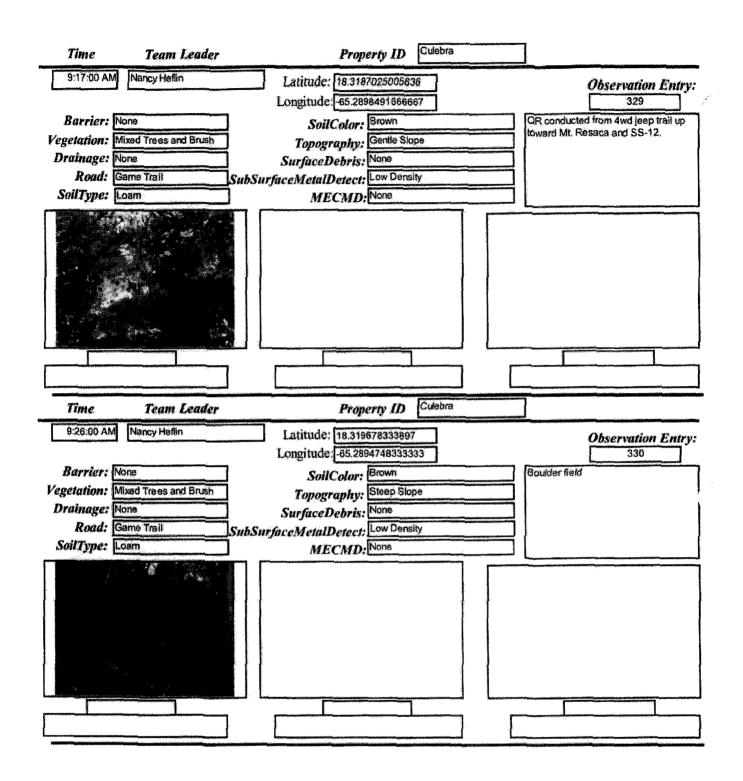


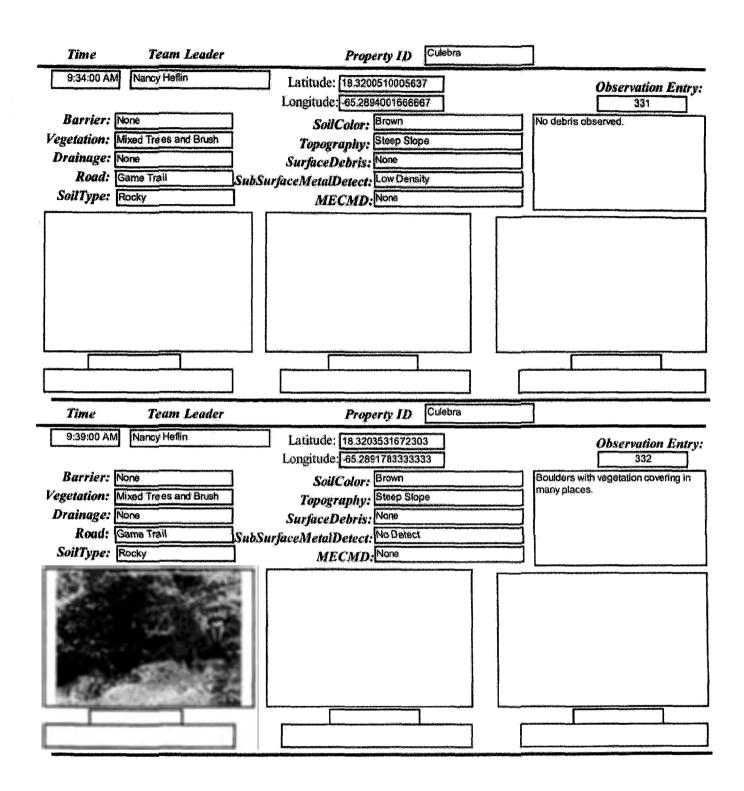




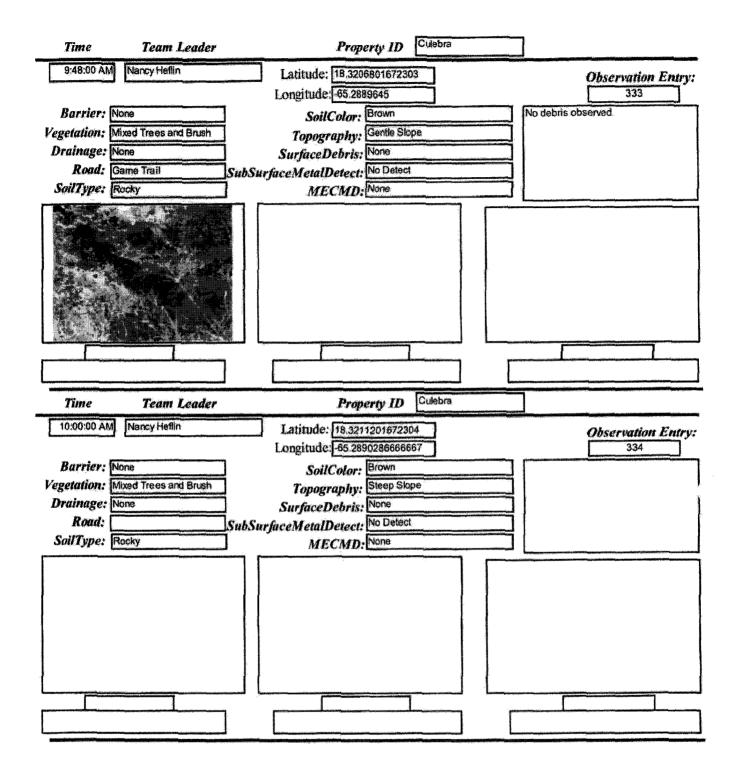


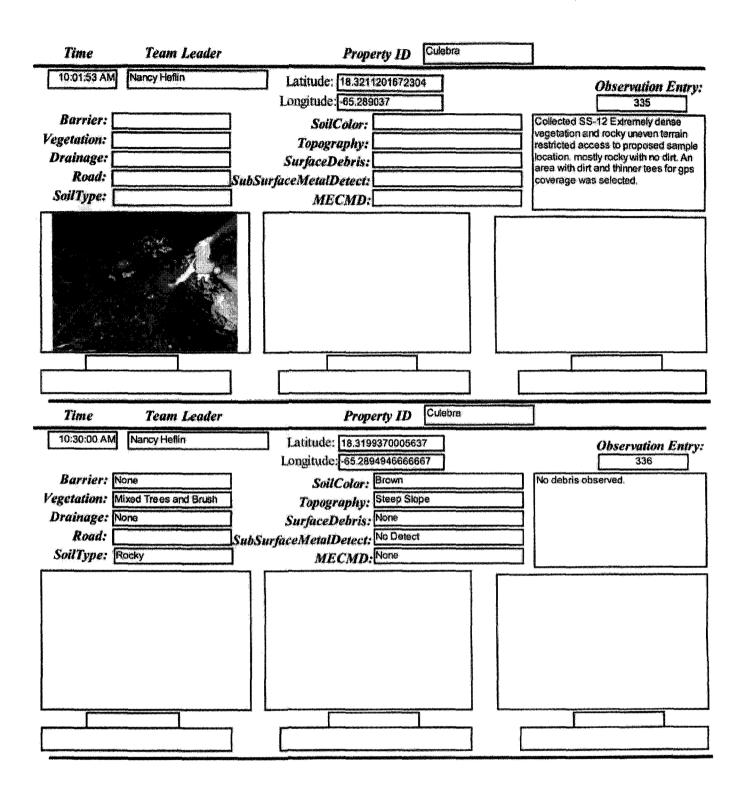


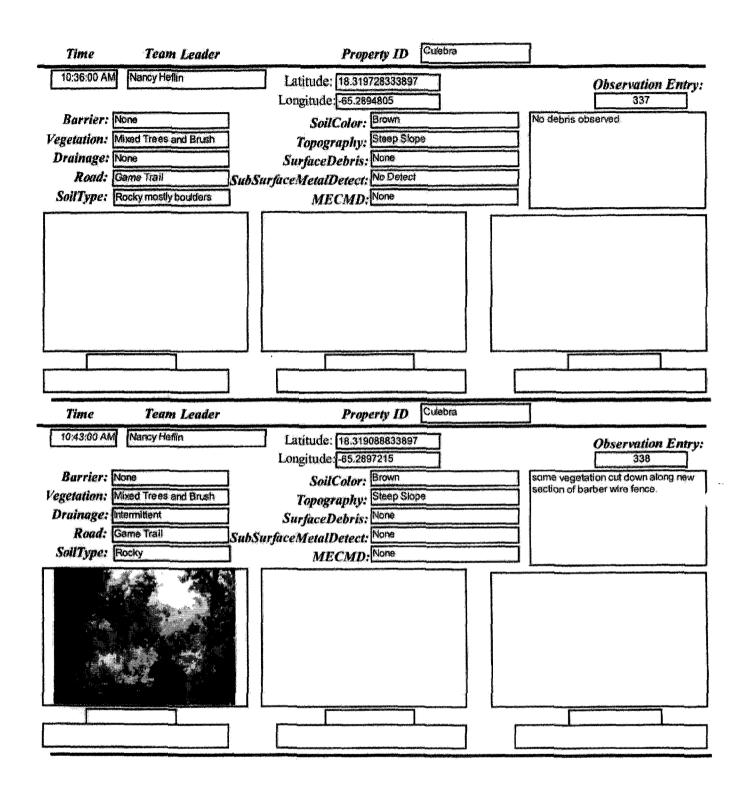


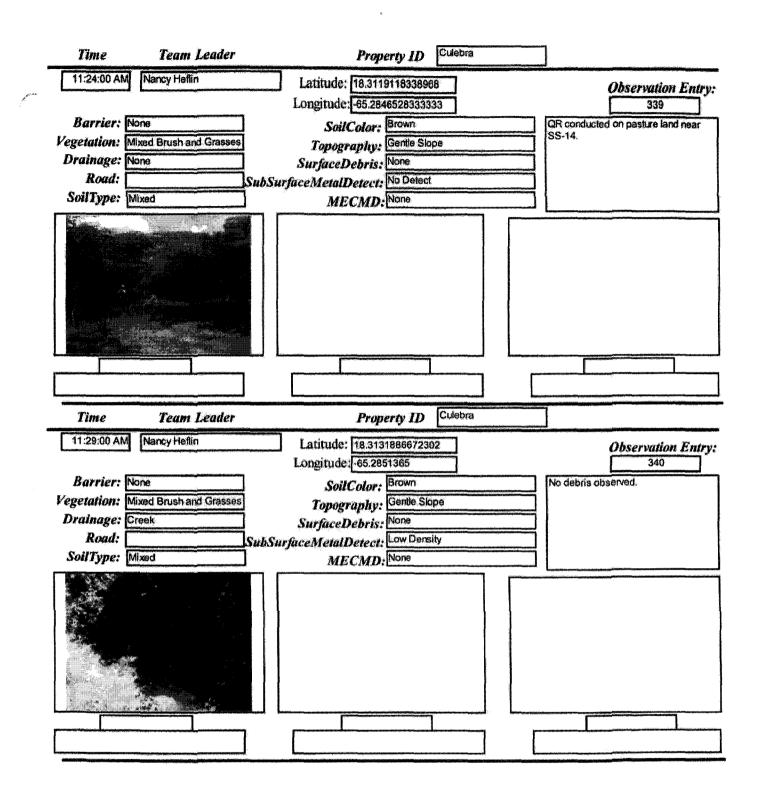


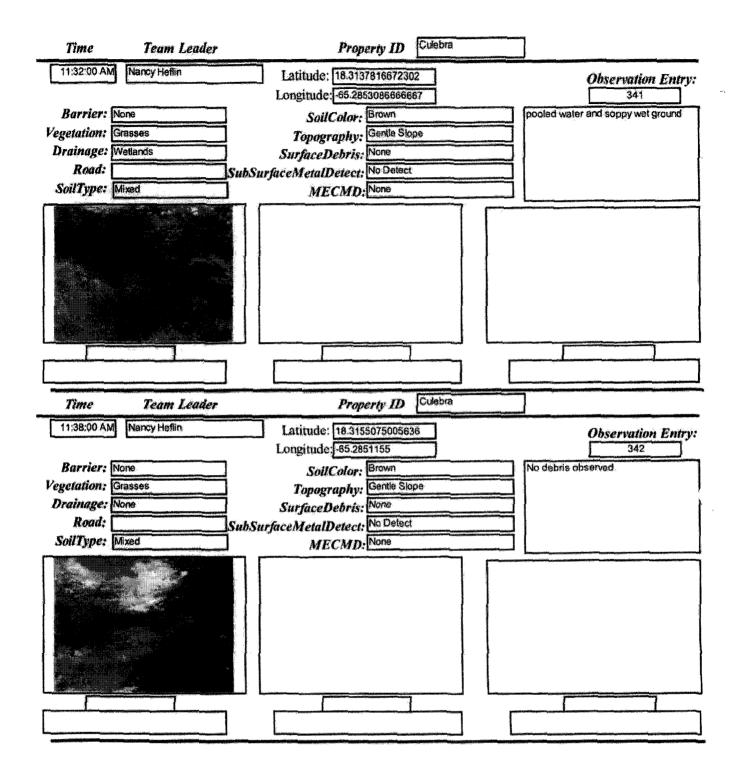
......

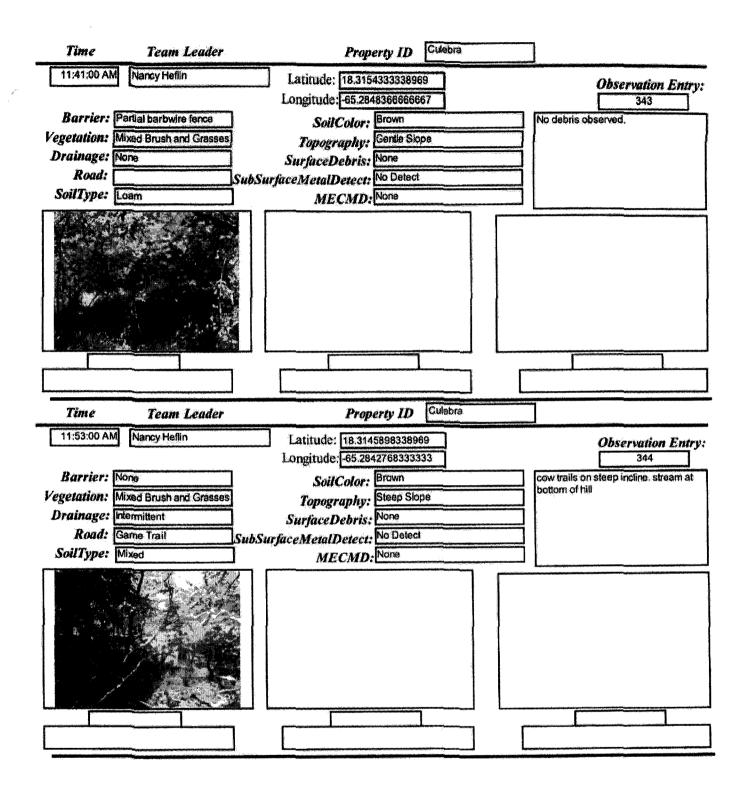


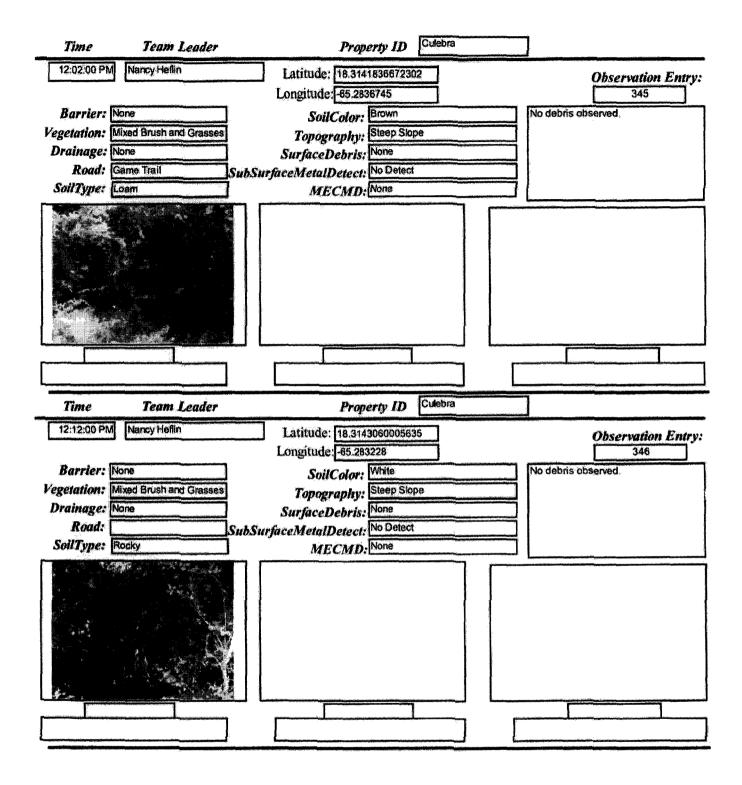


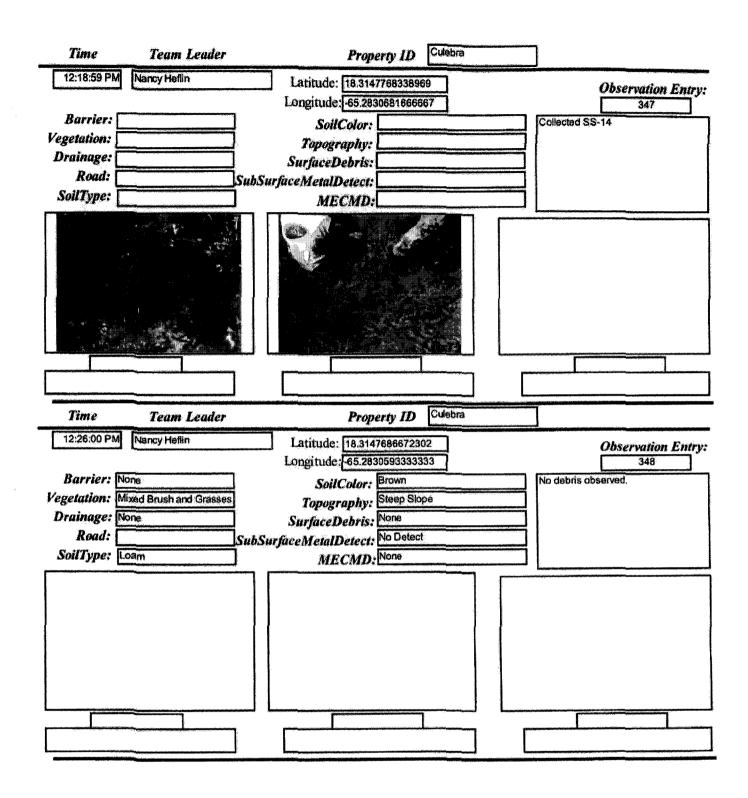


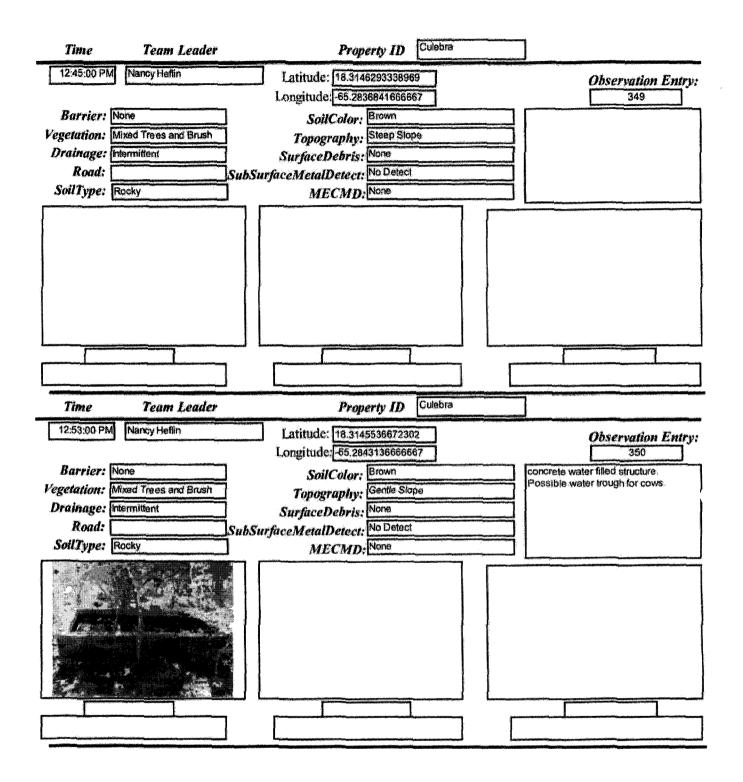


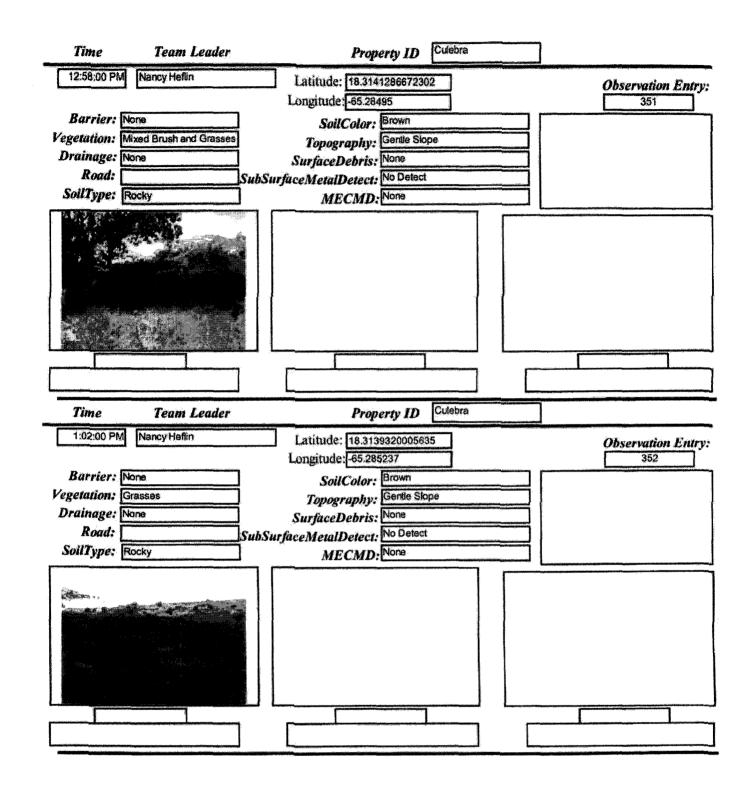

ĩ

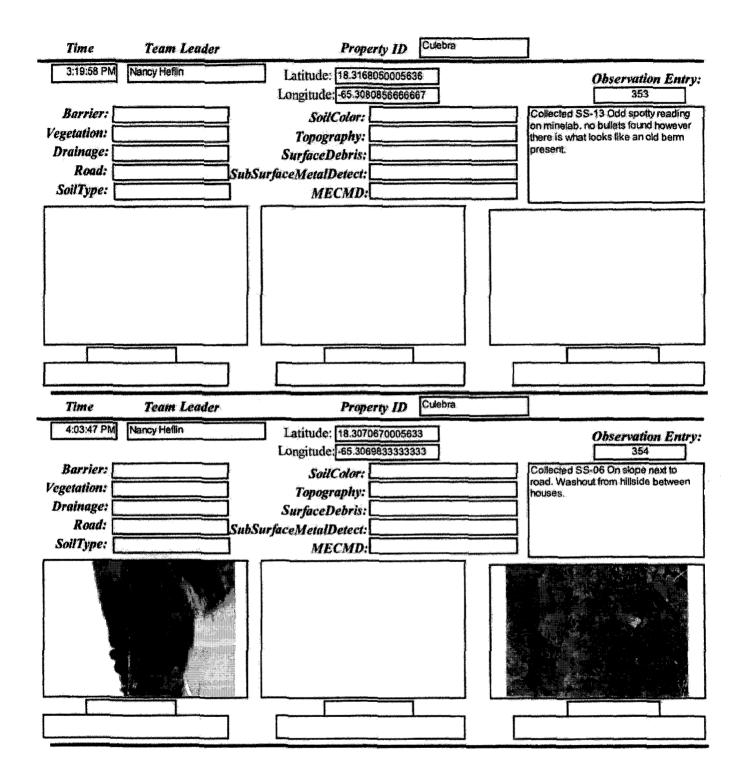


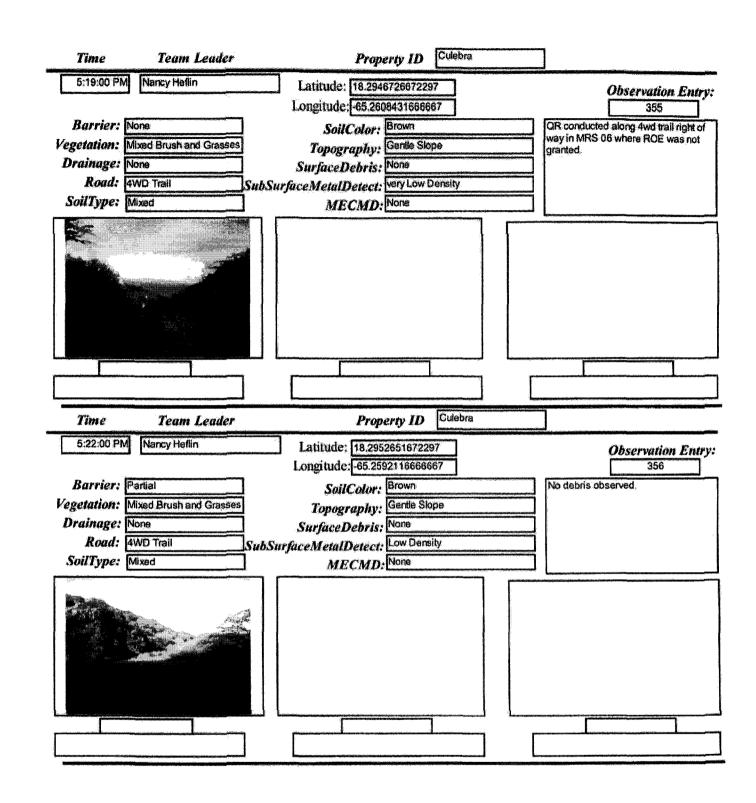


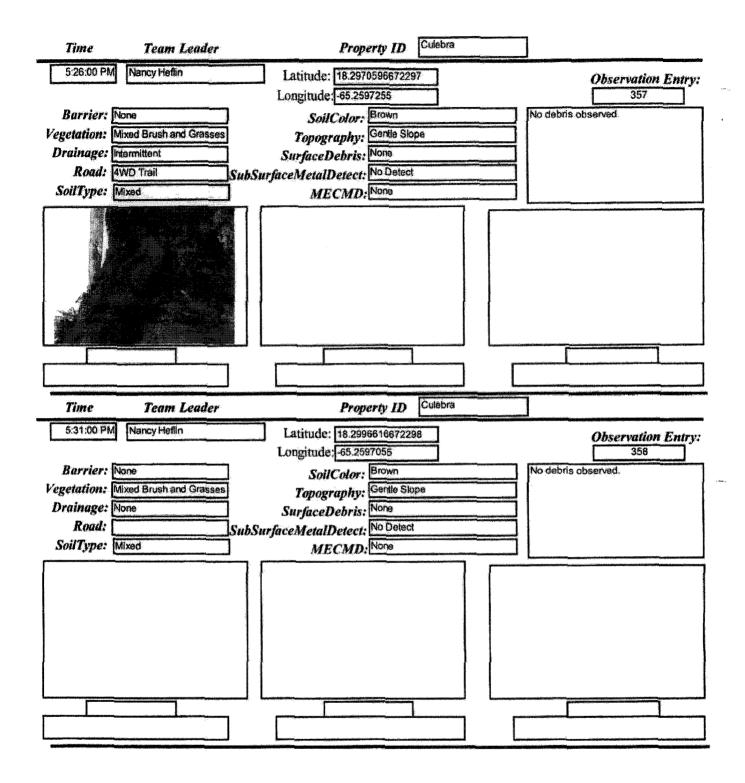


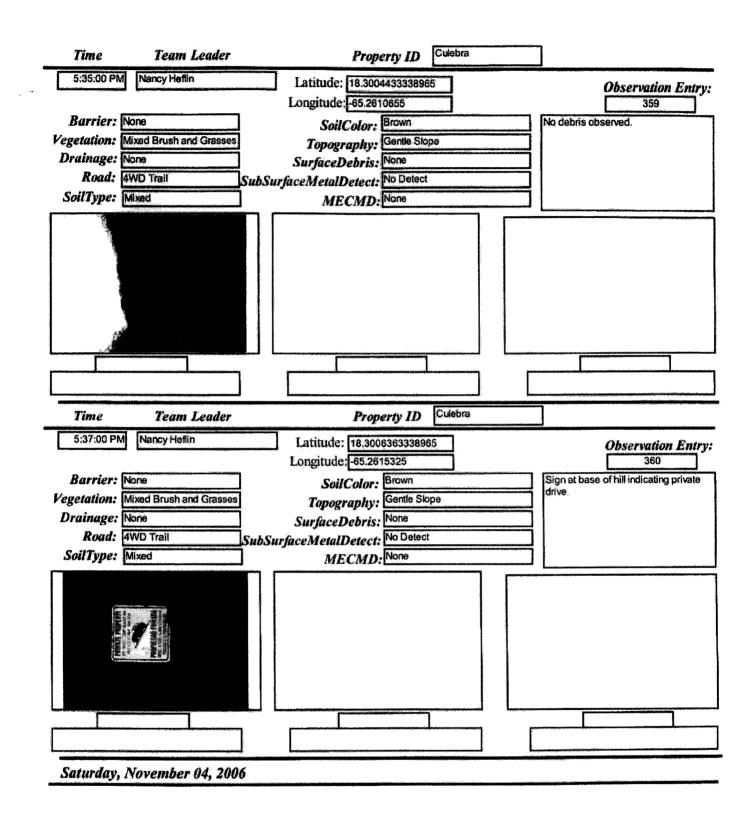


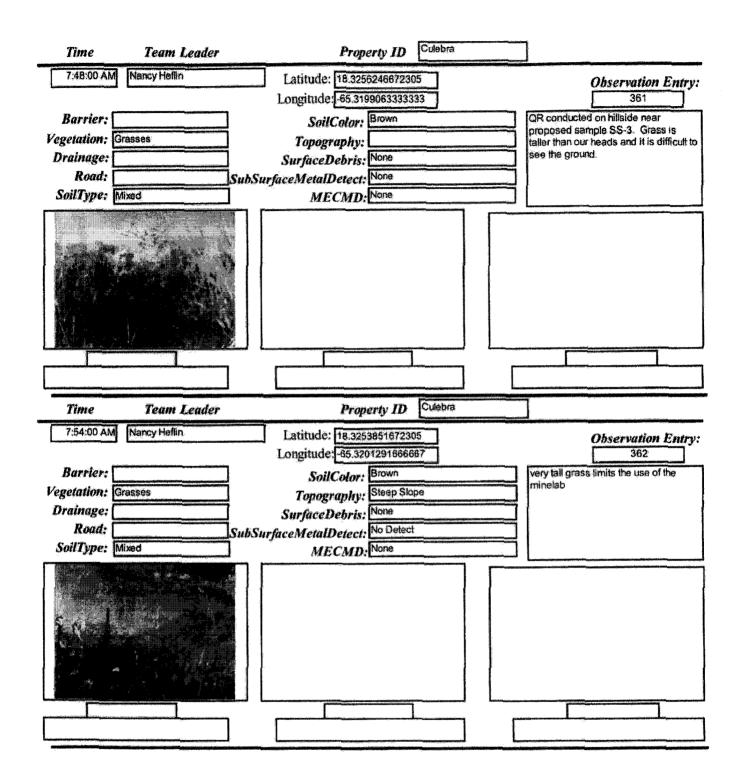


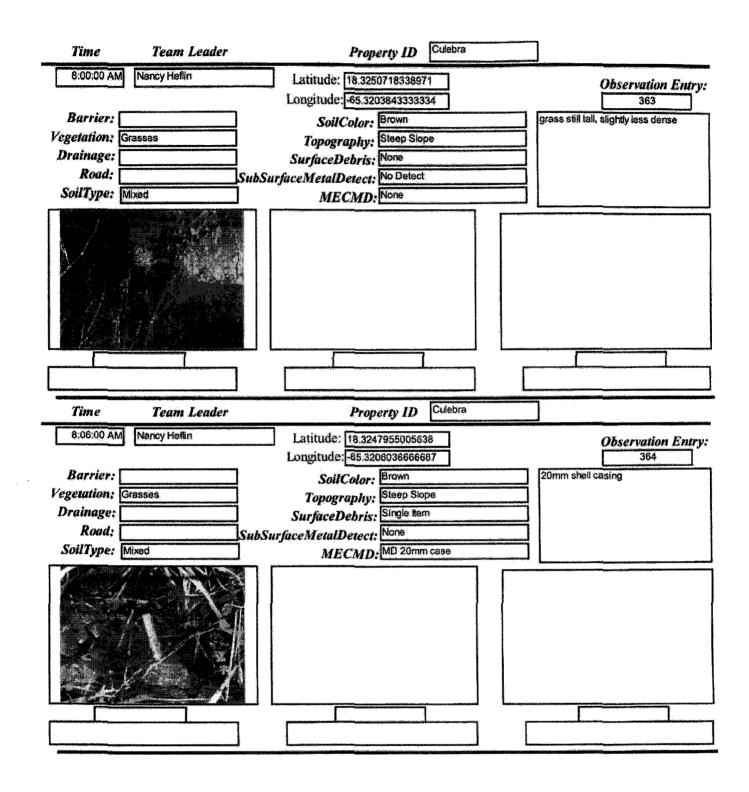


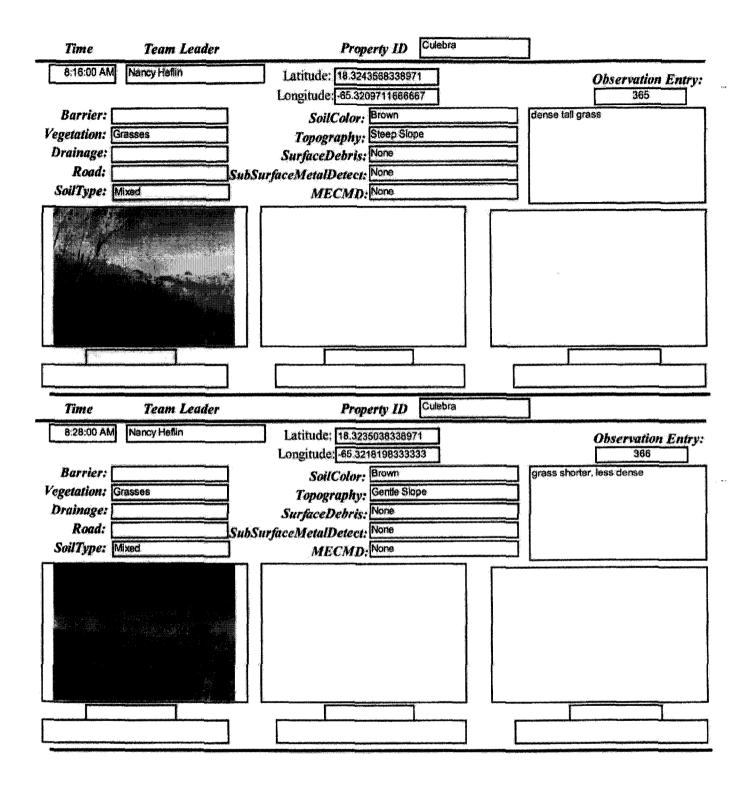


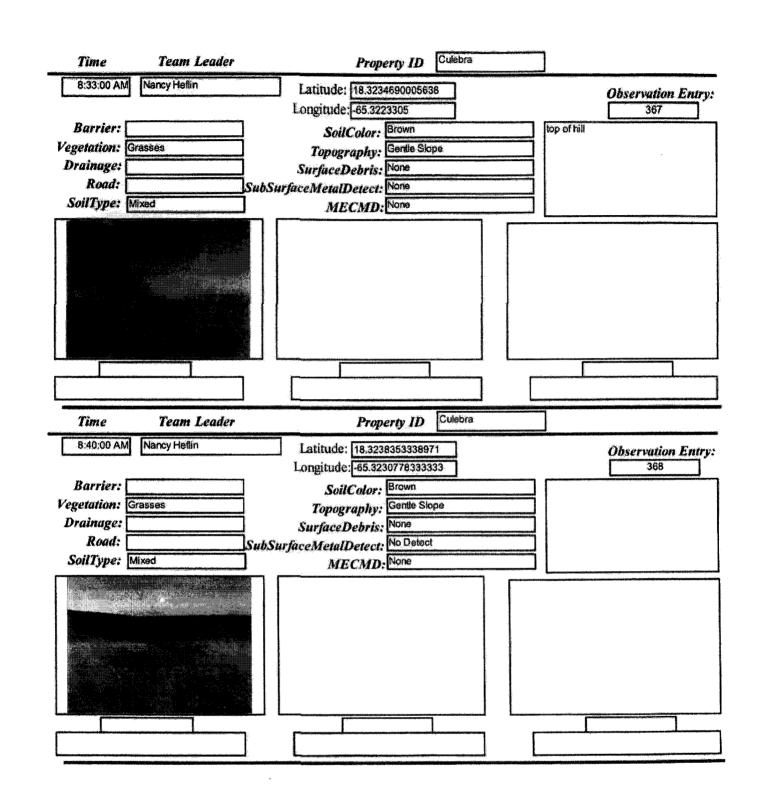


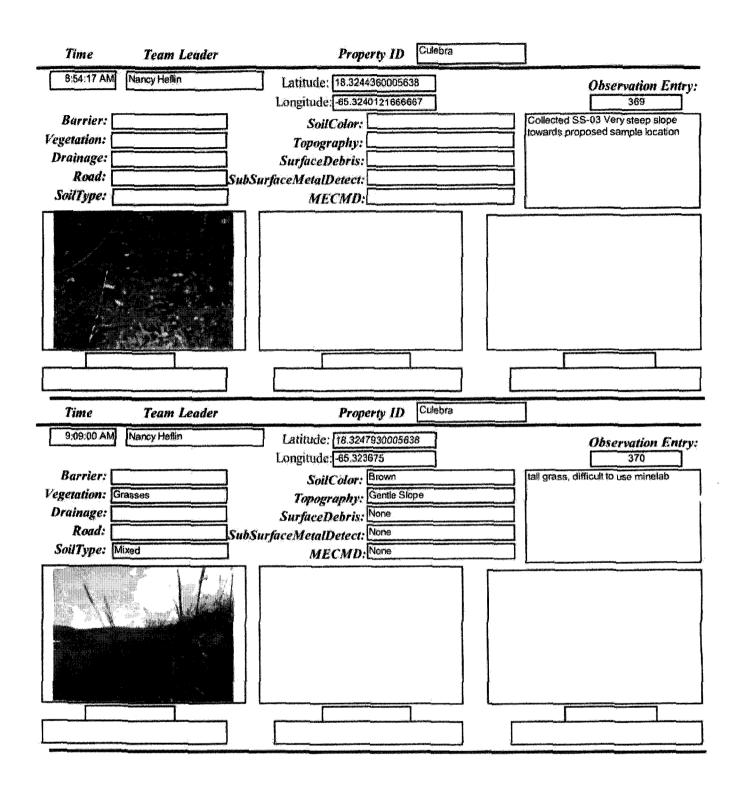


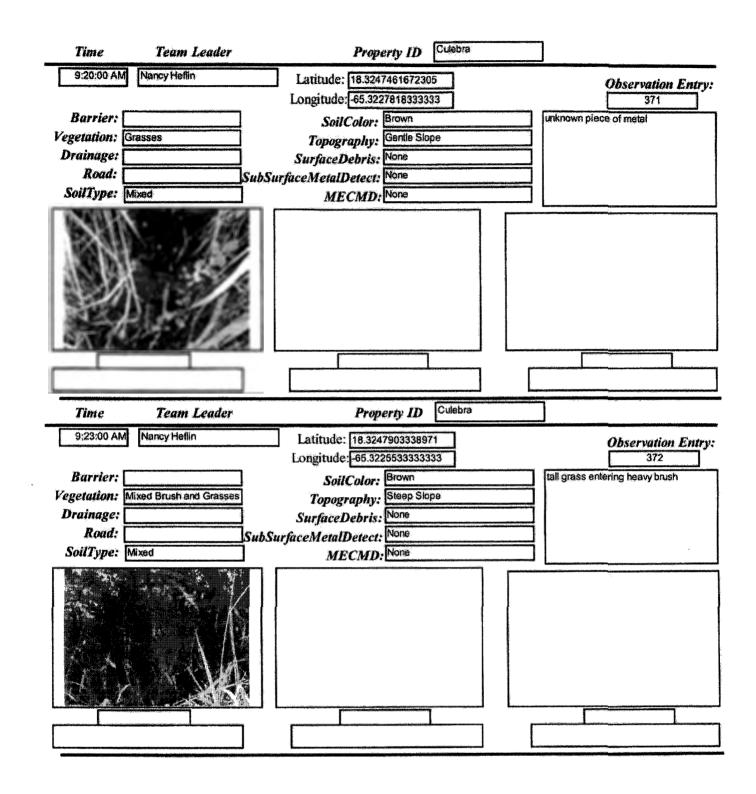


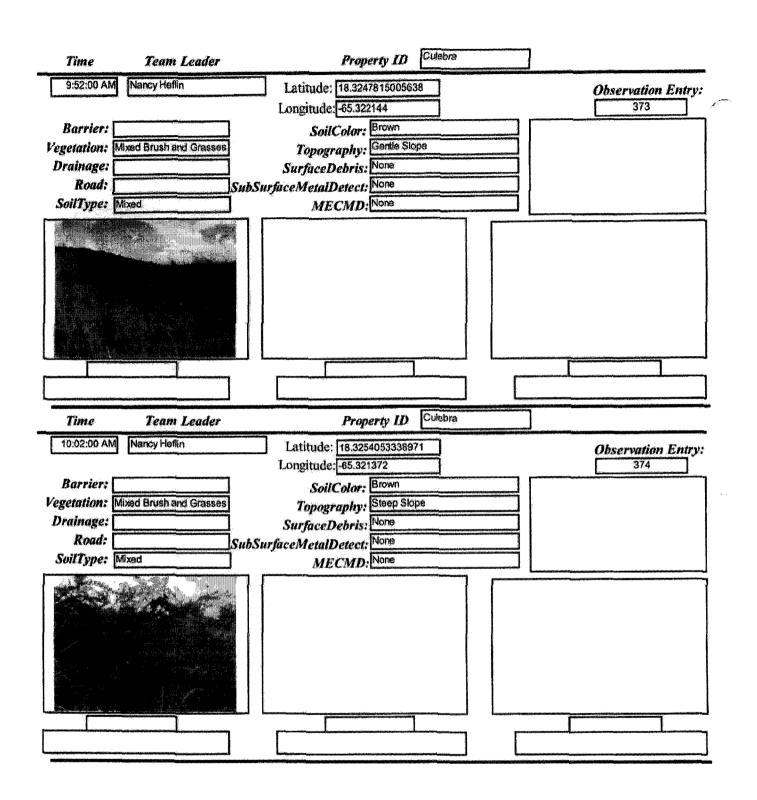


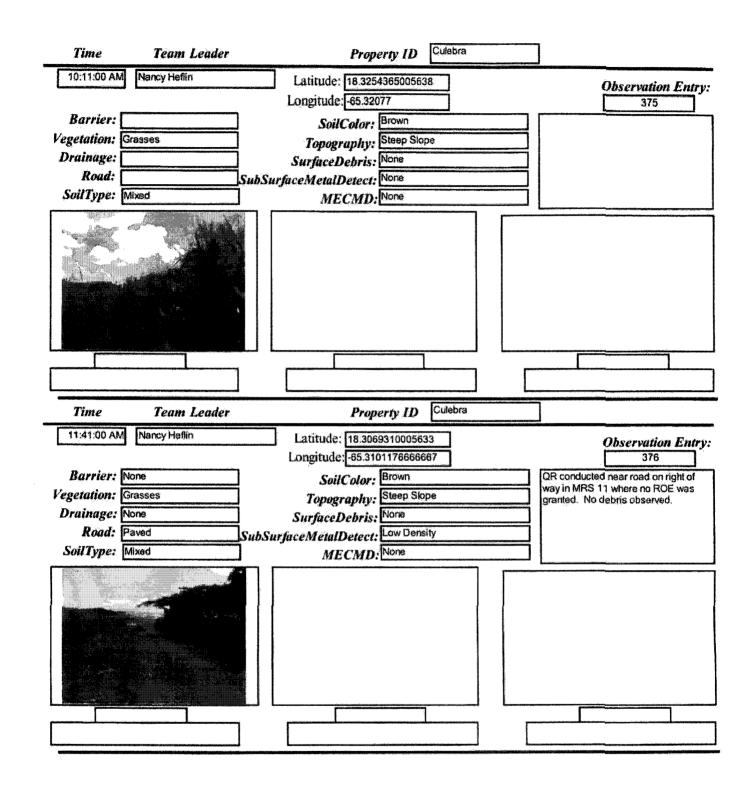


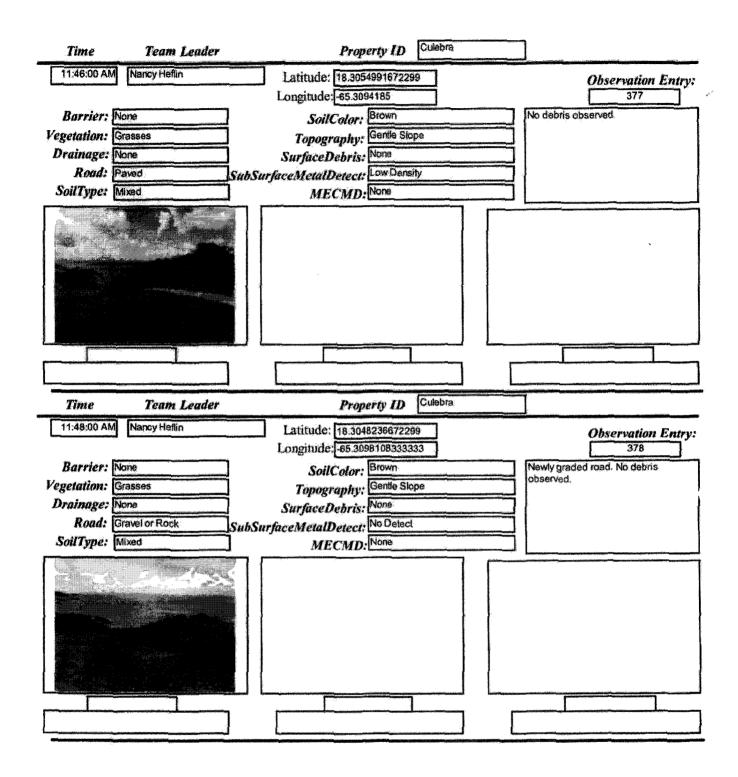


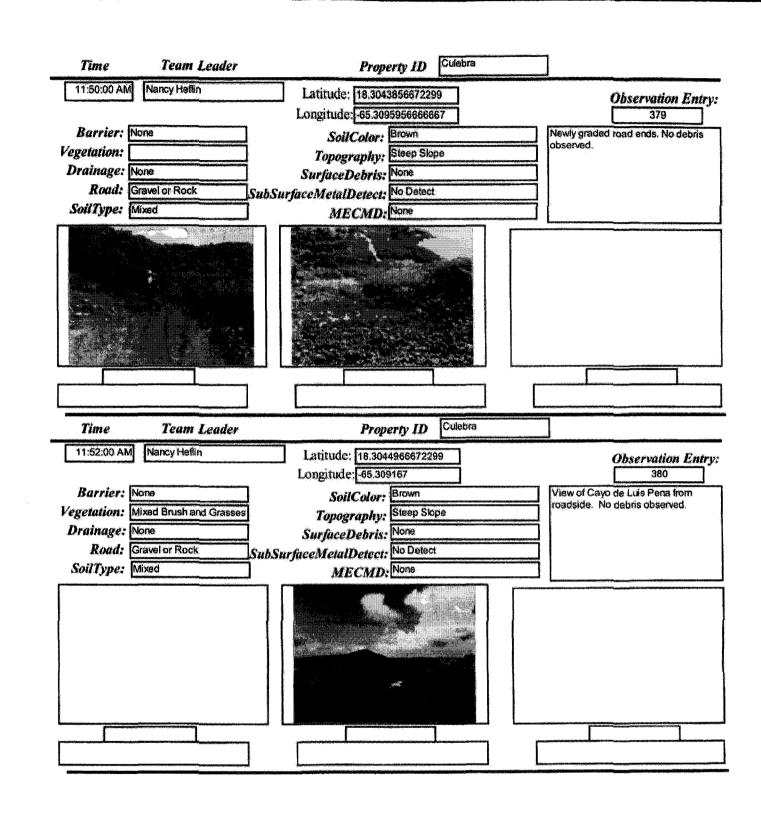


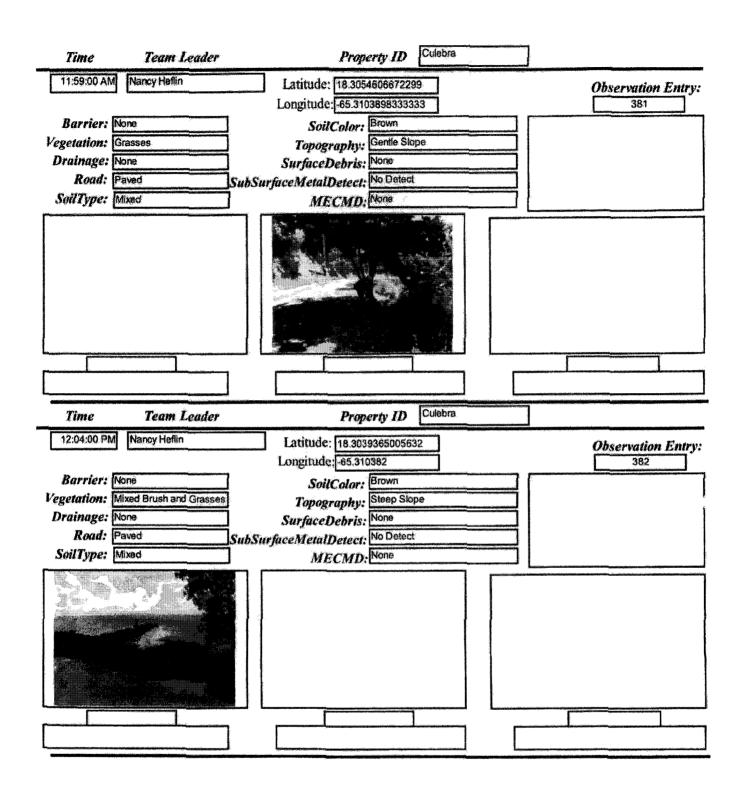


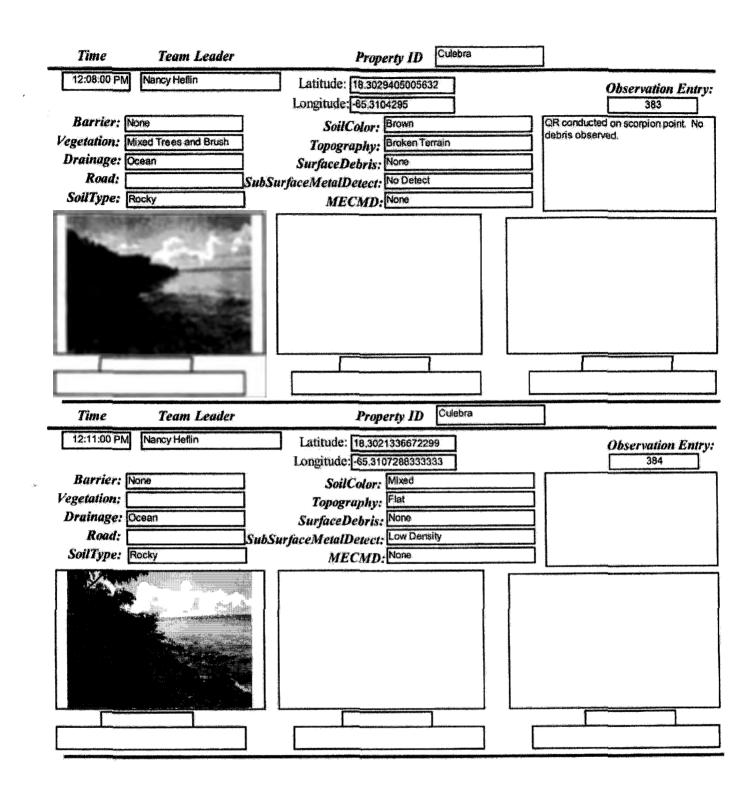


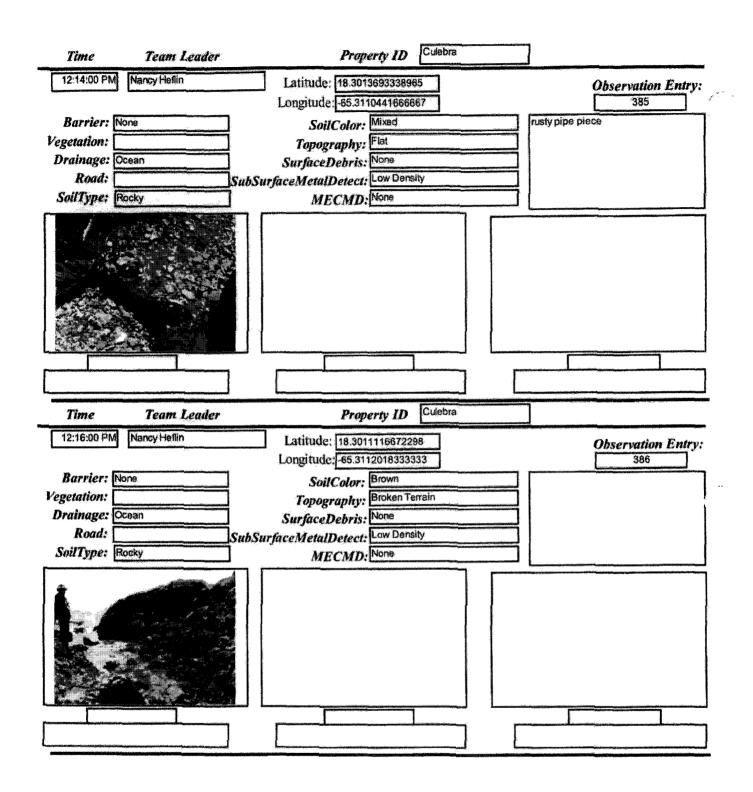


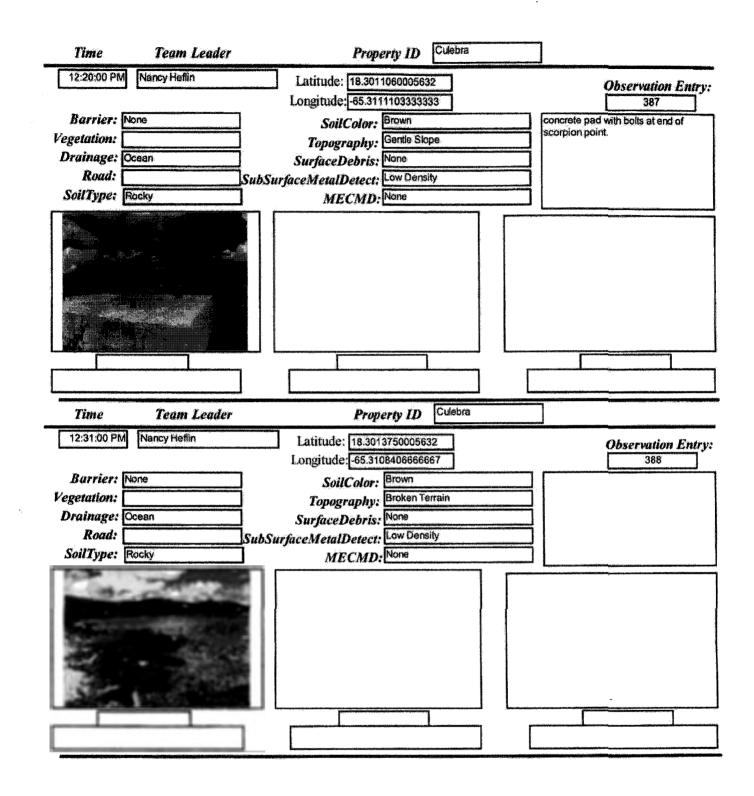


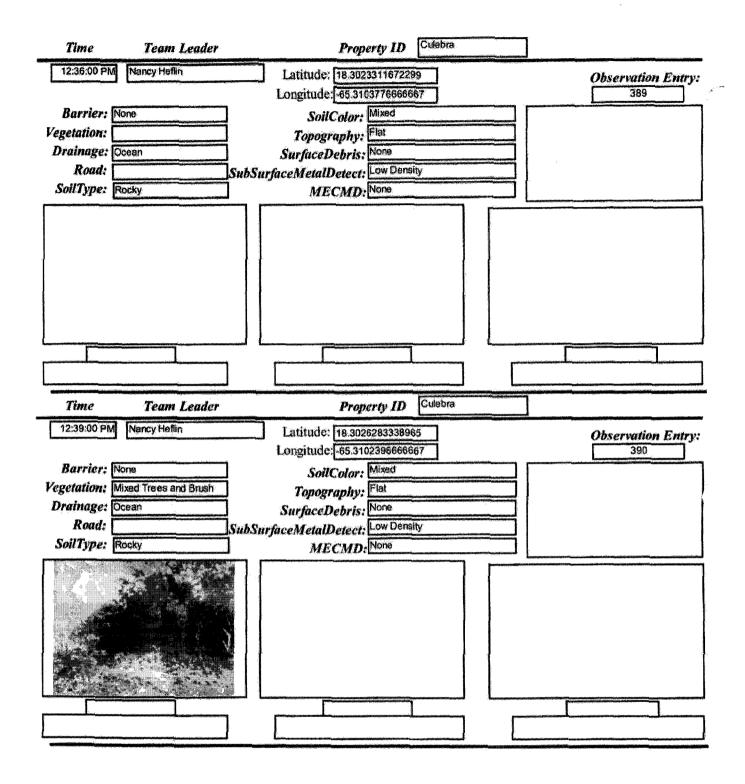


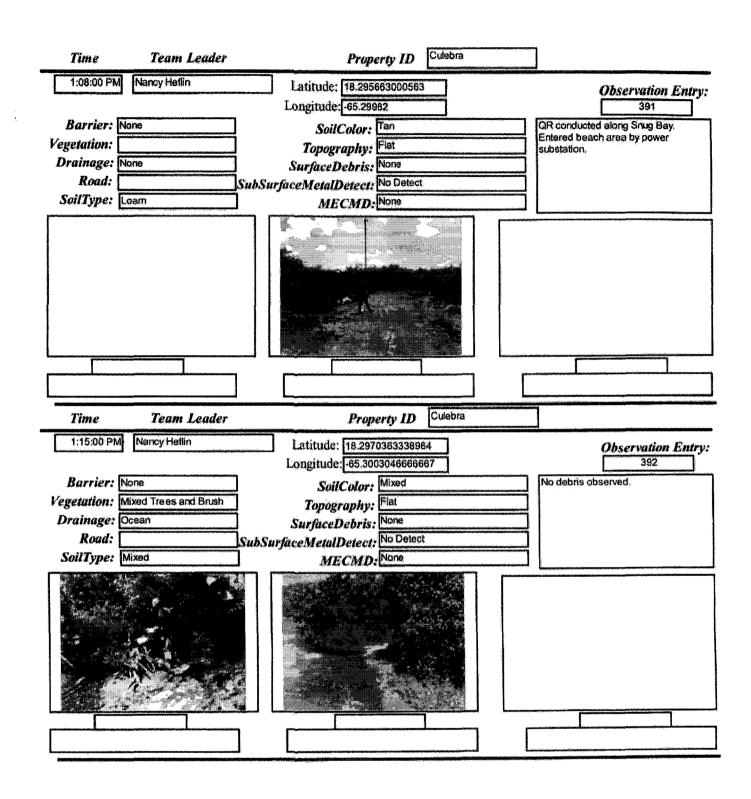


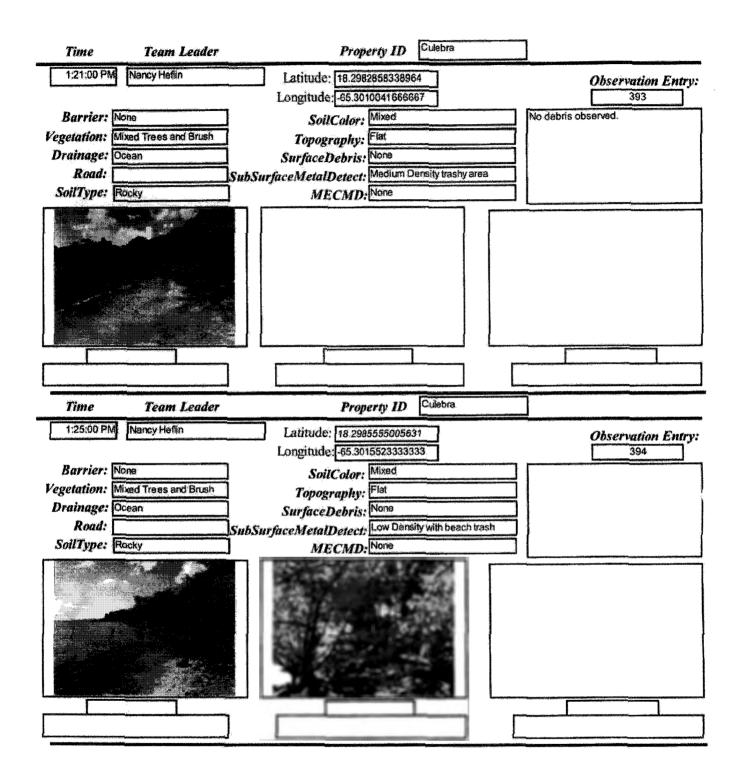


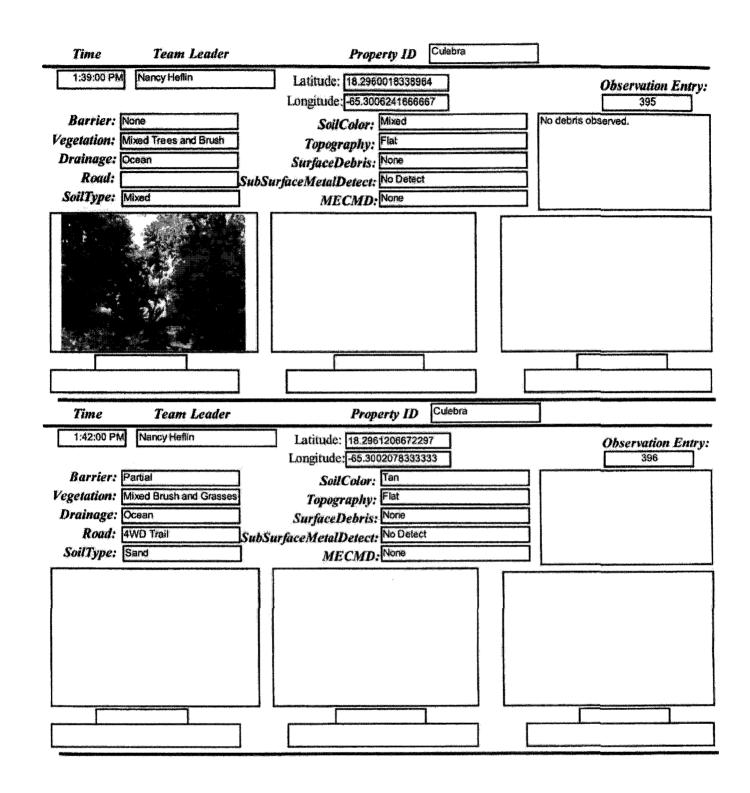


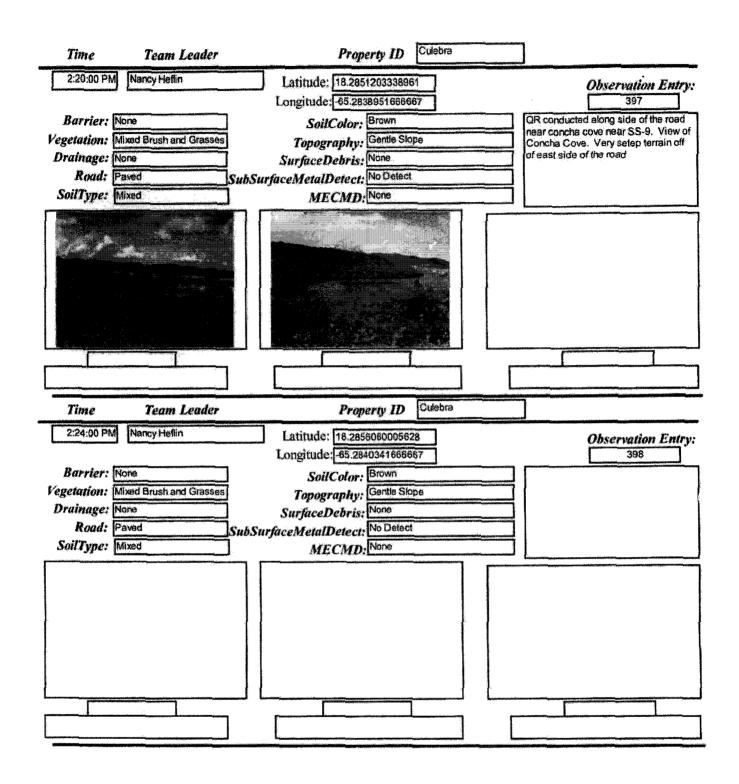


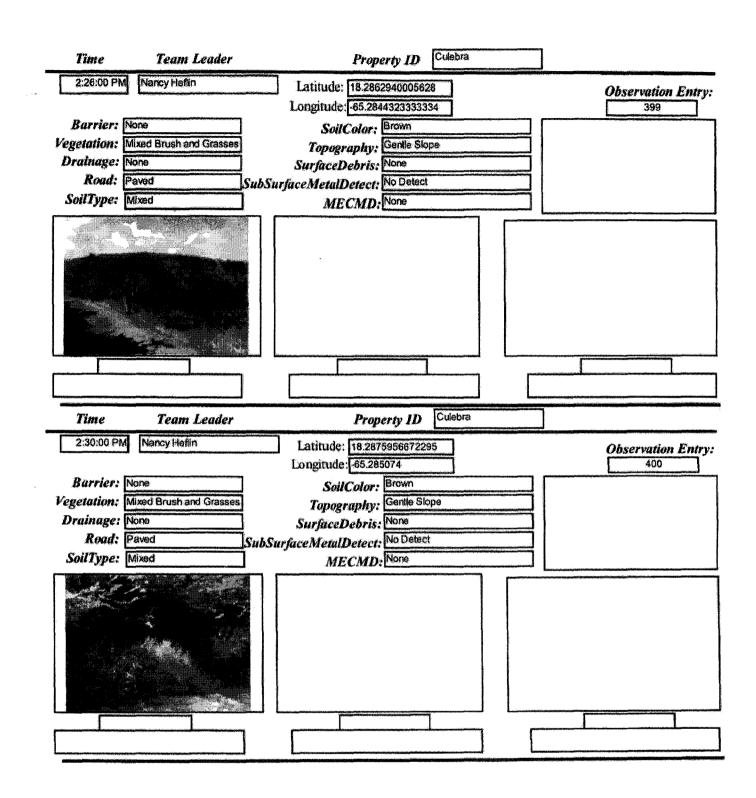


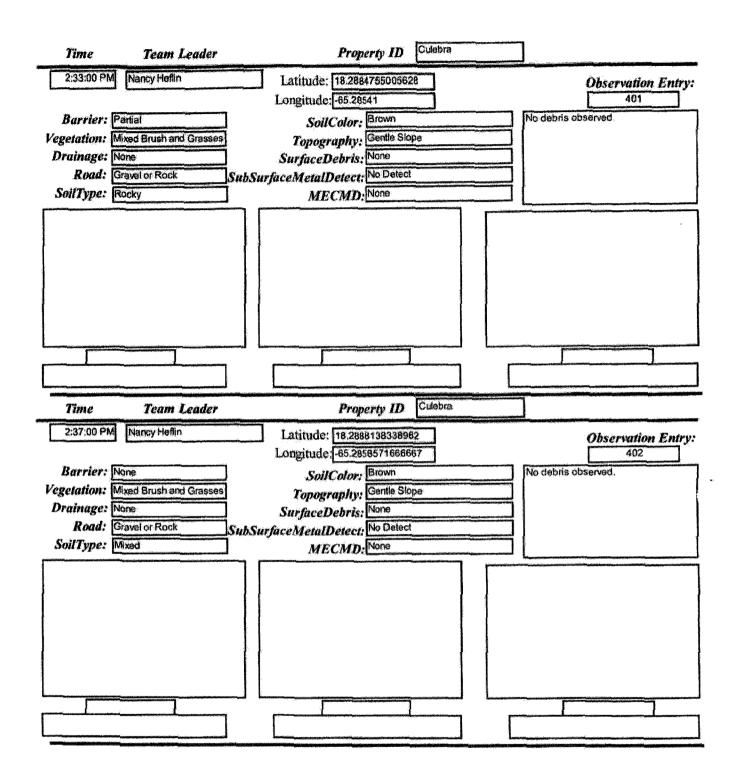


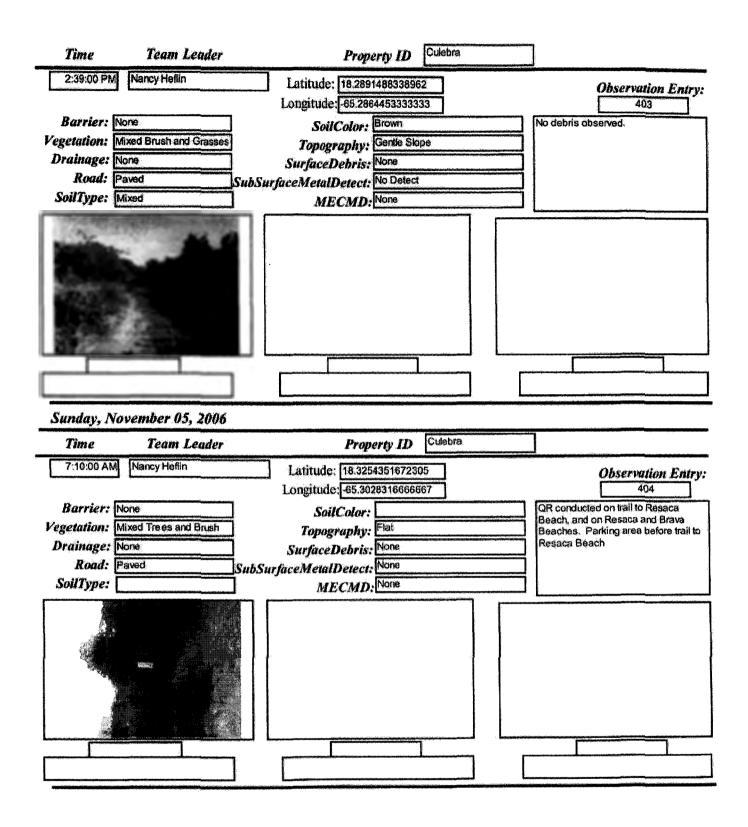


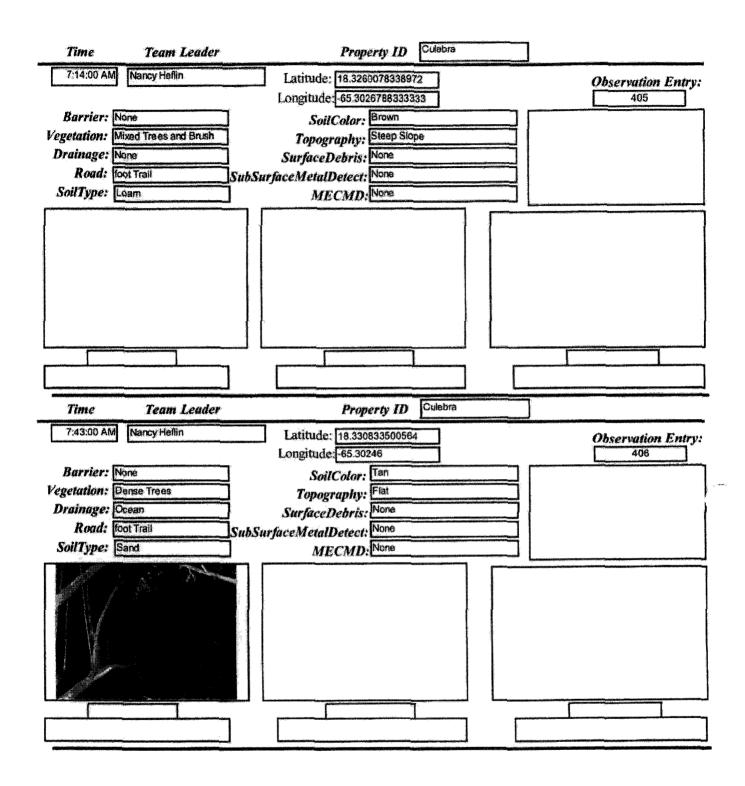


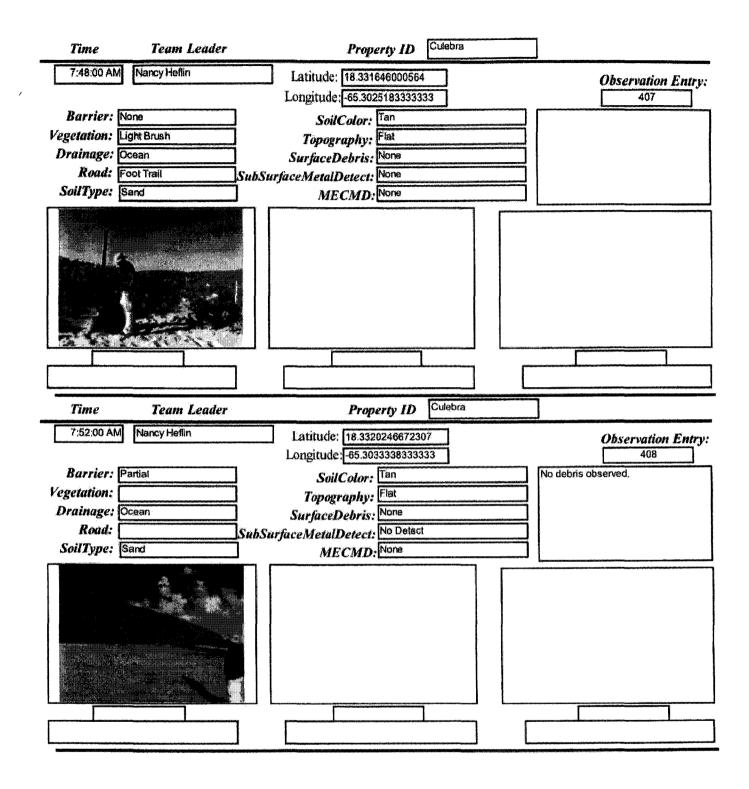


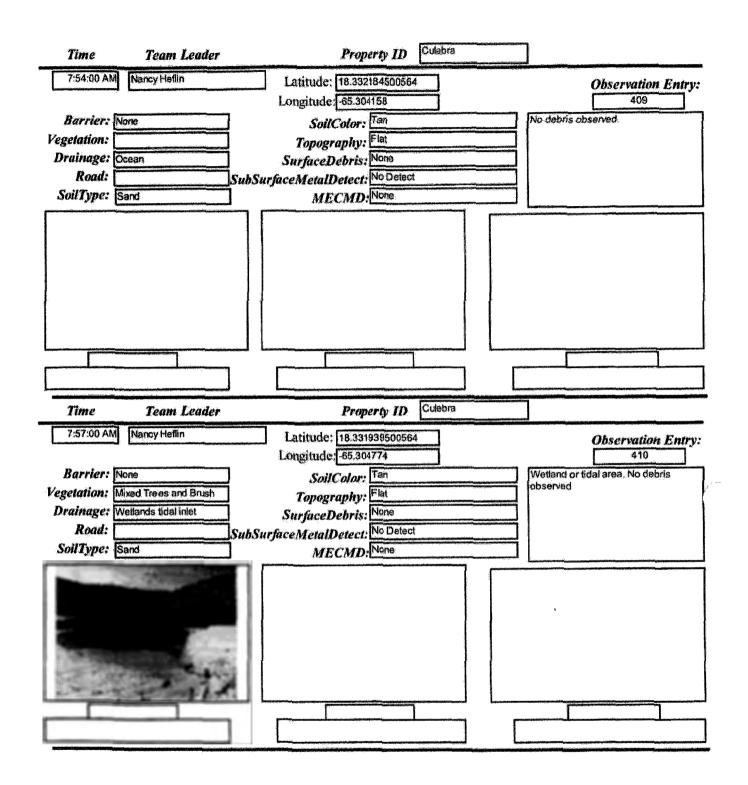


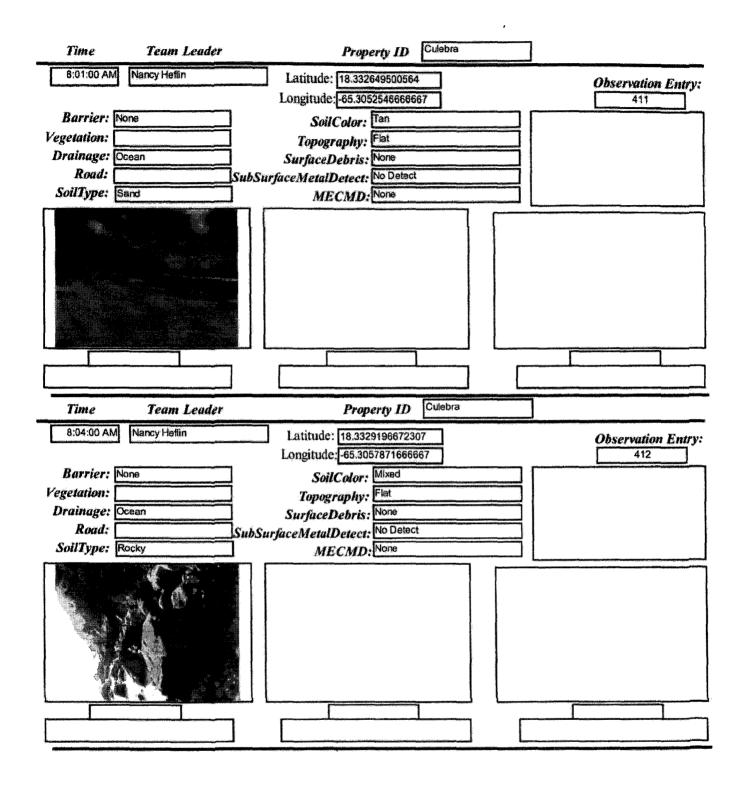


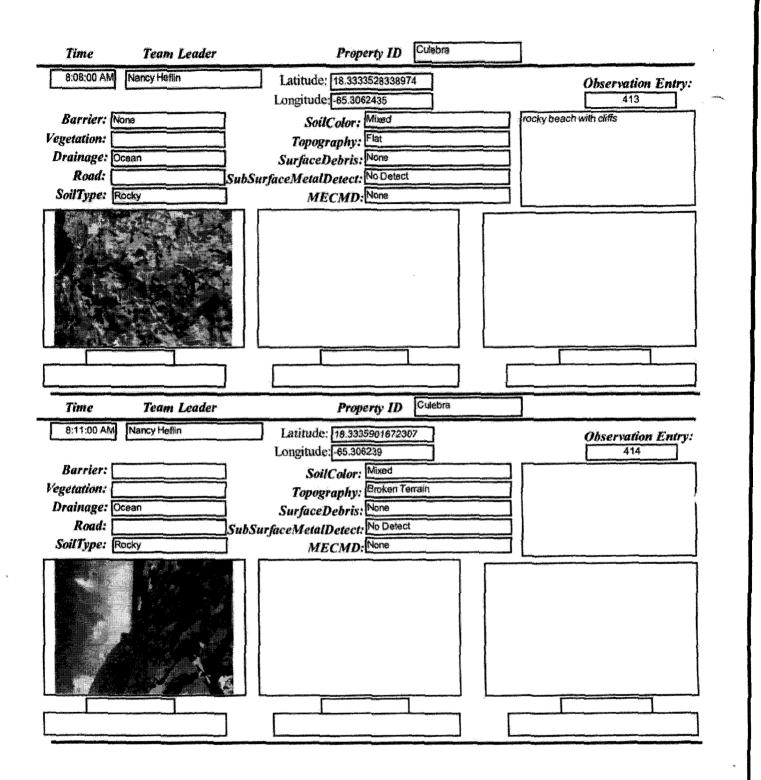


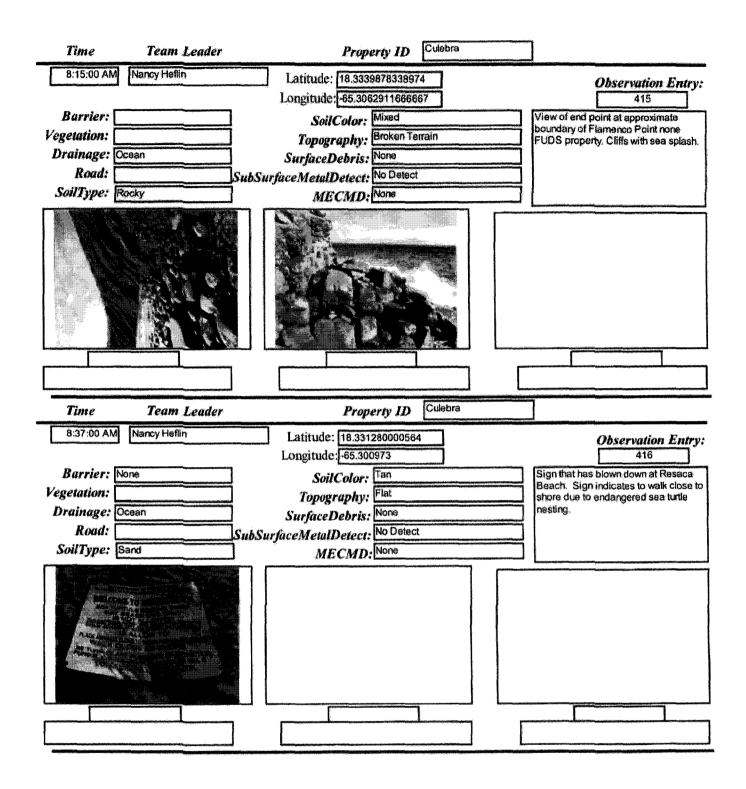


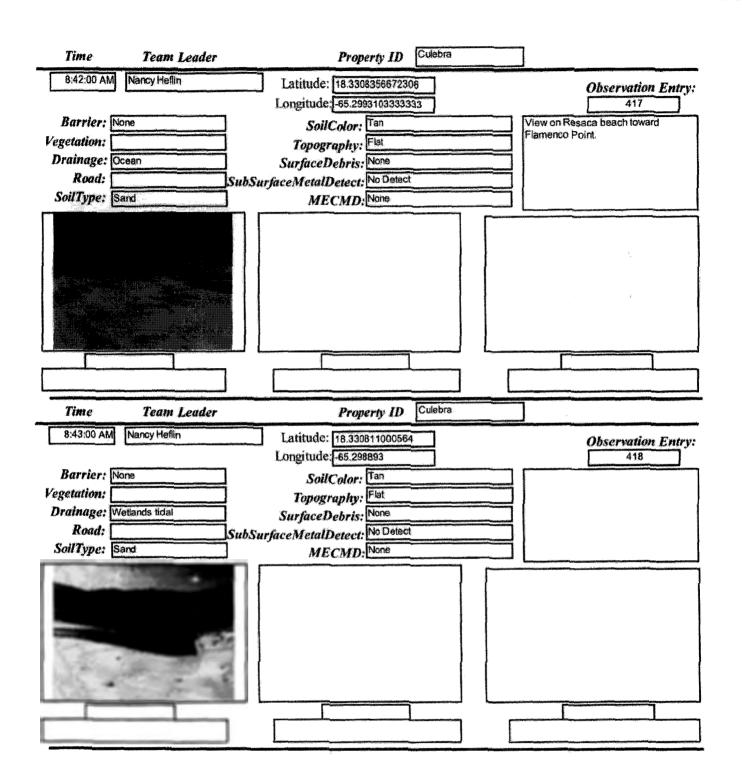


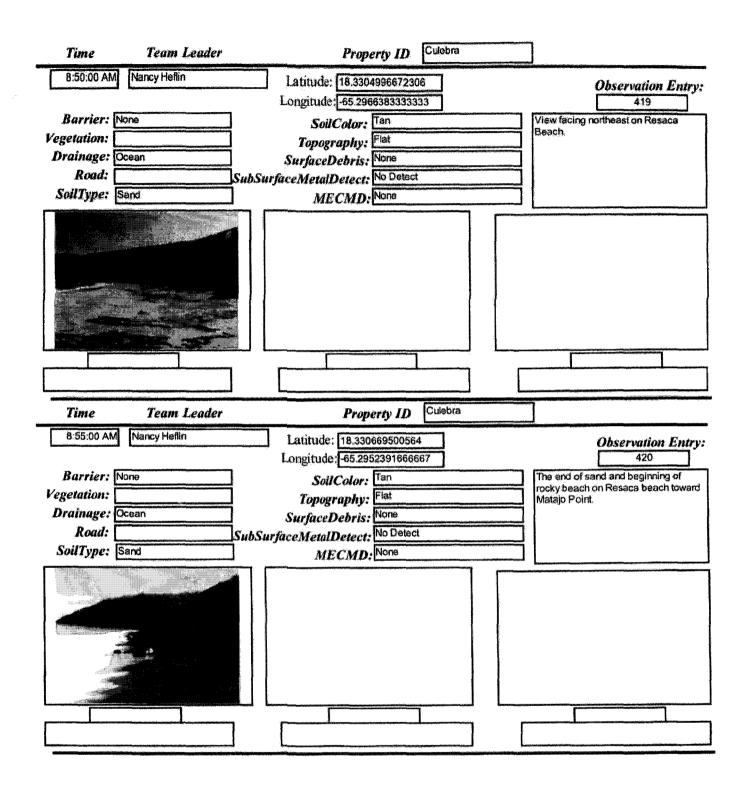


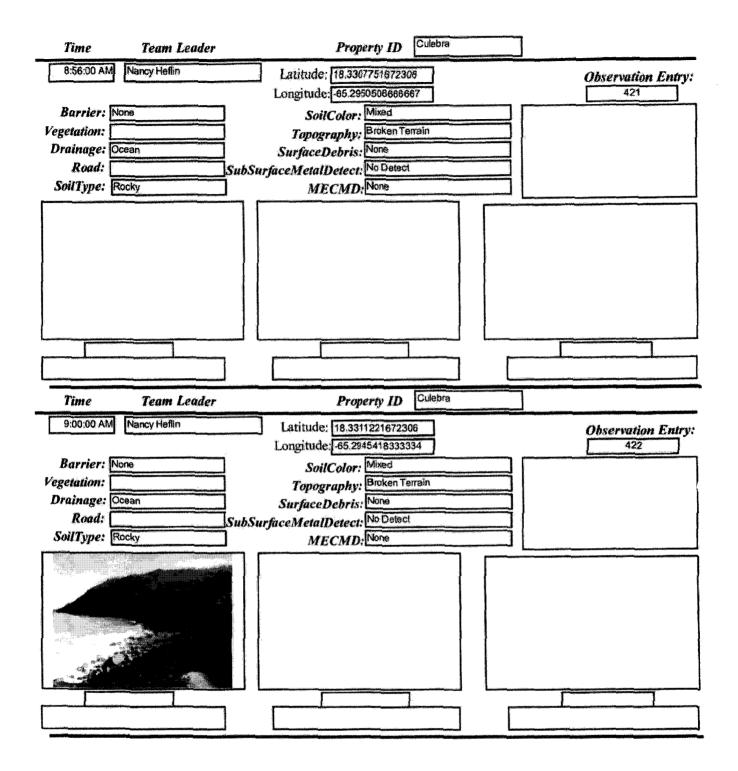


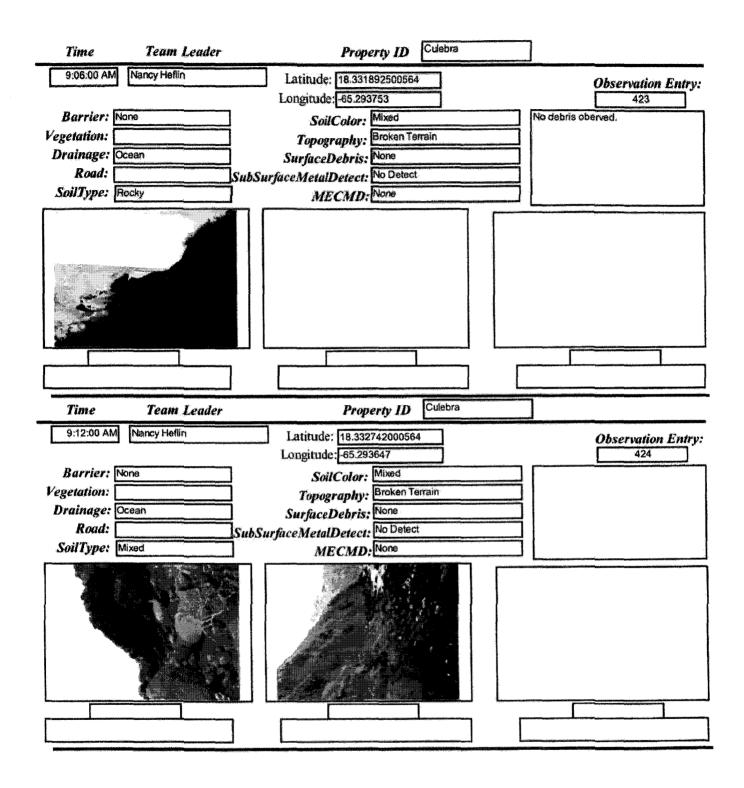


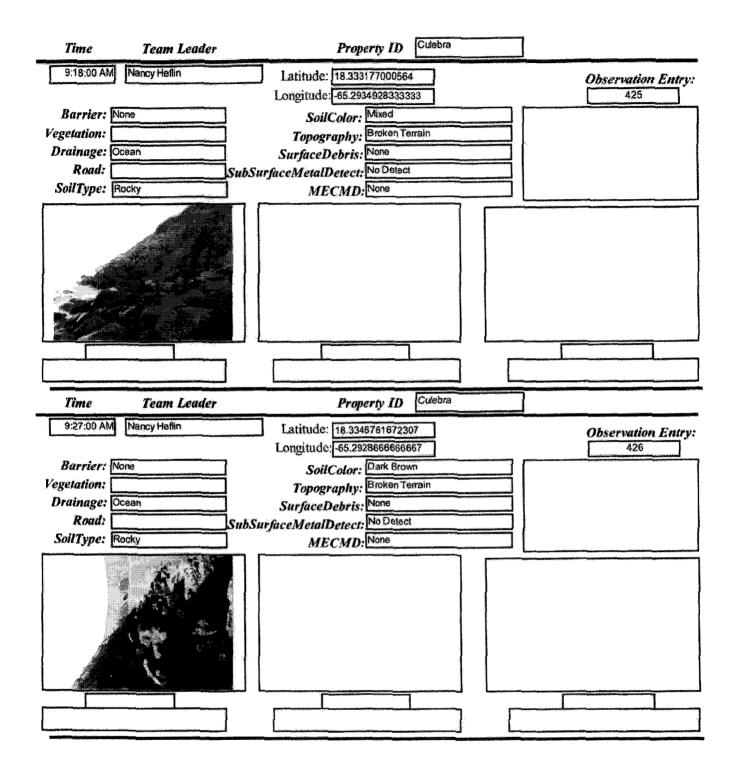


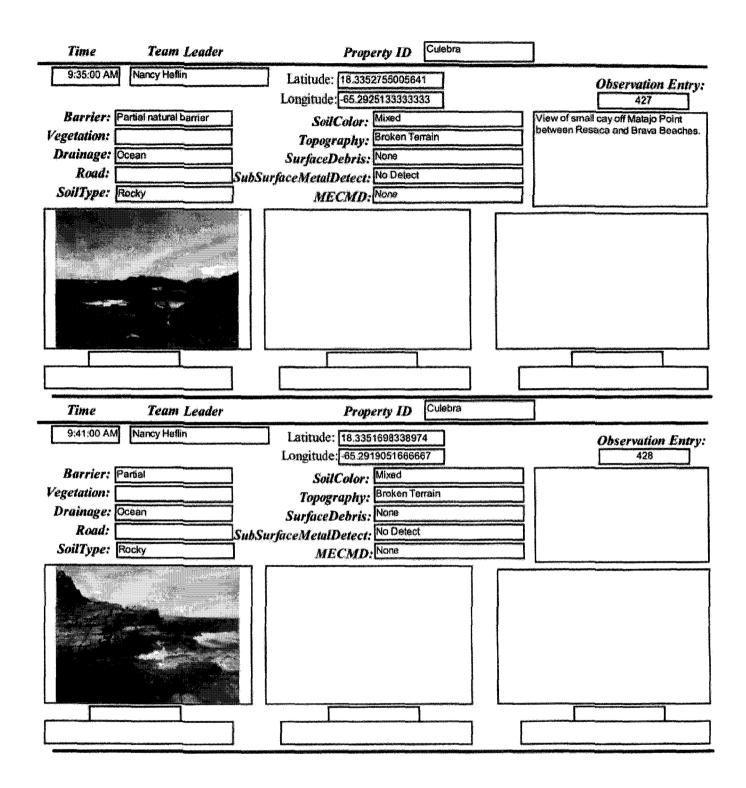


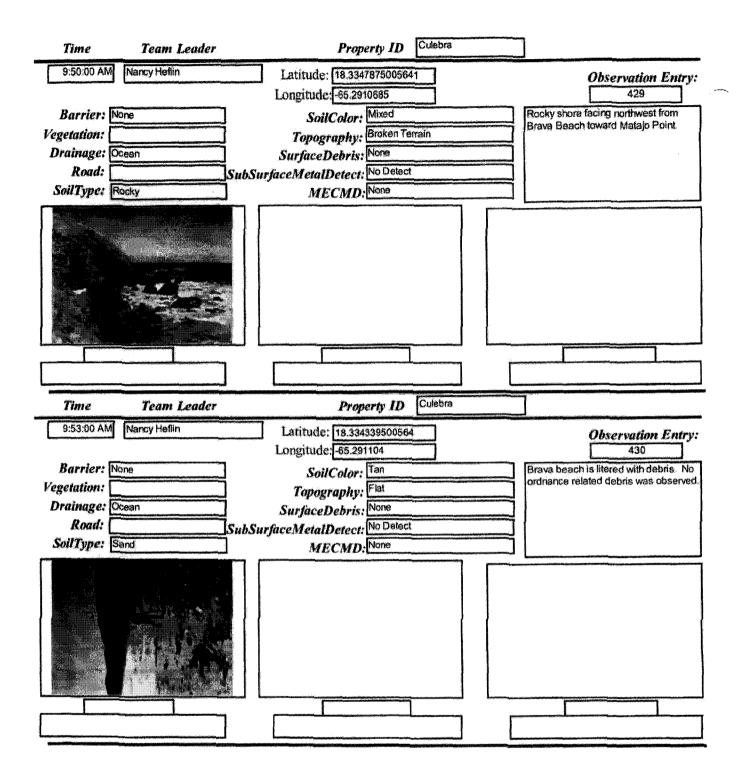


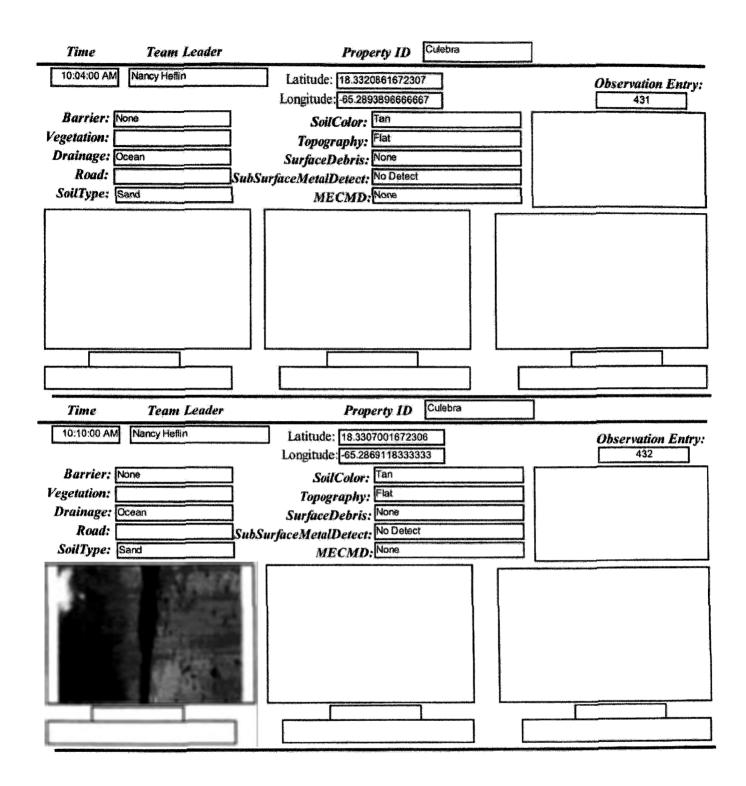


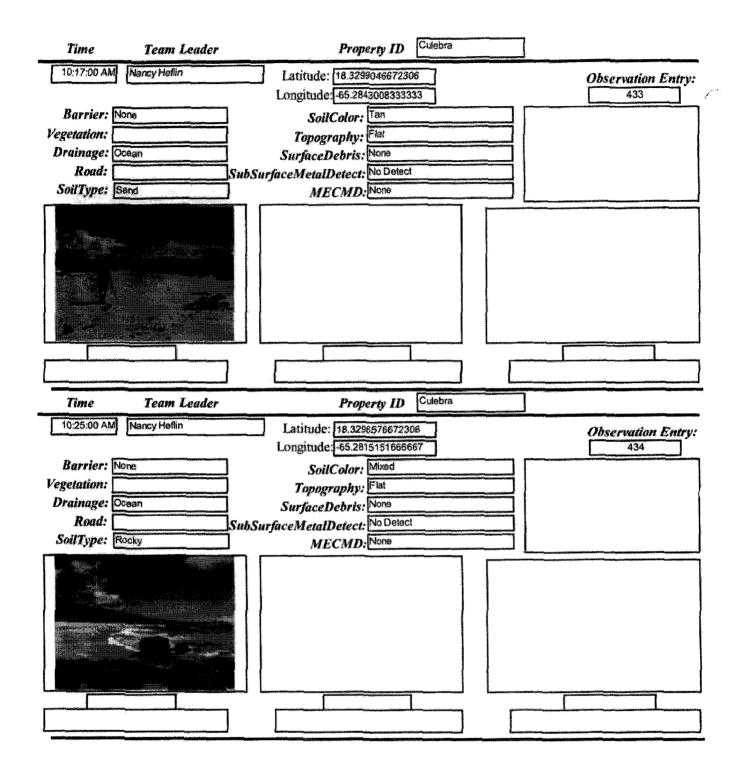


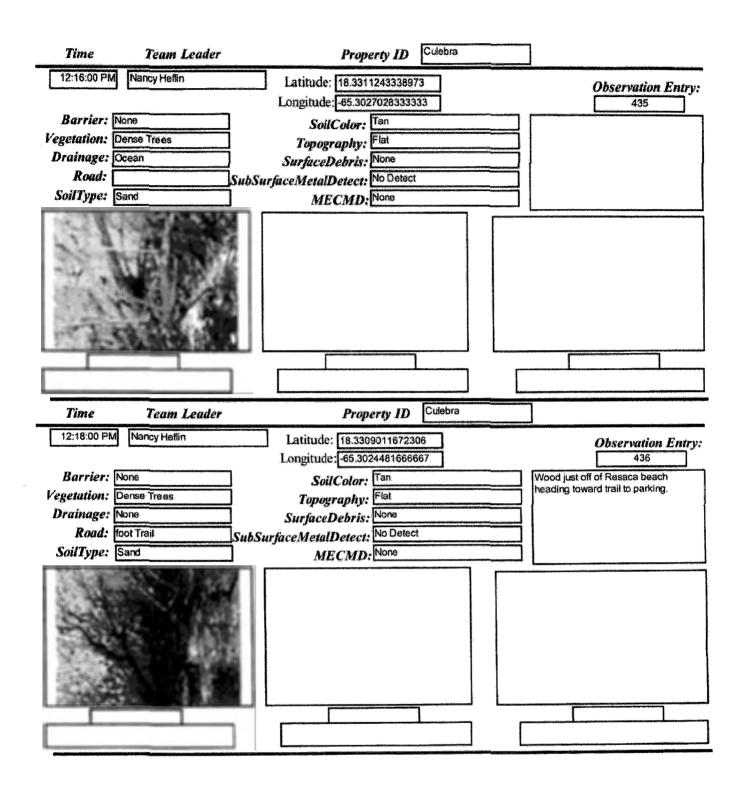

200

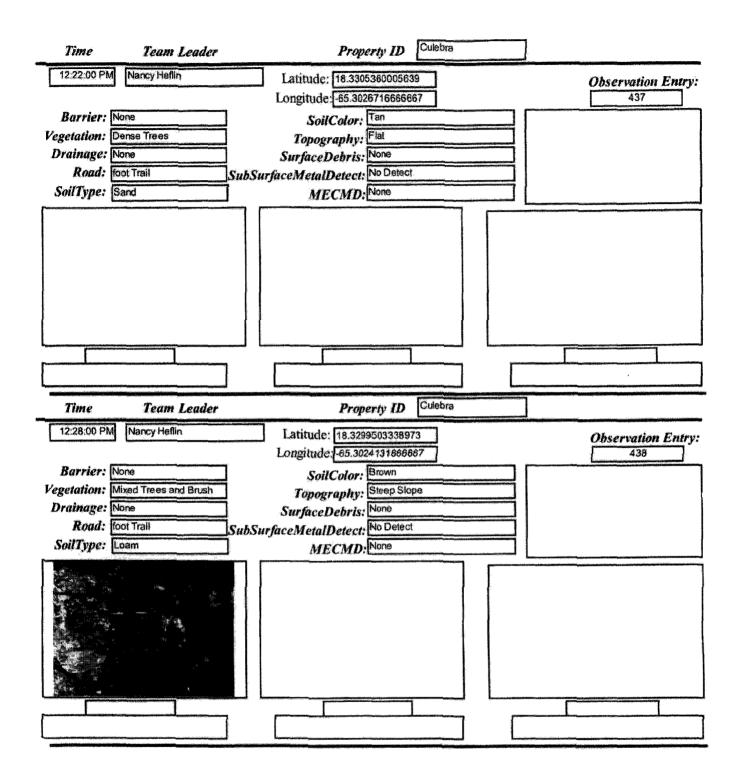


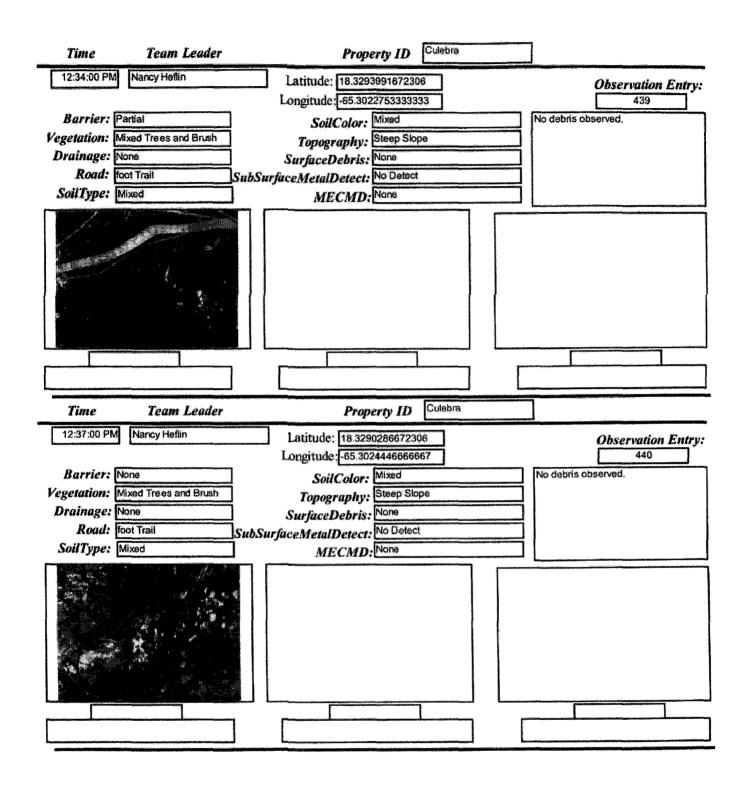


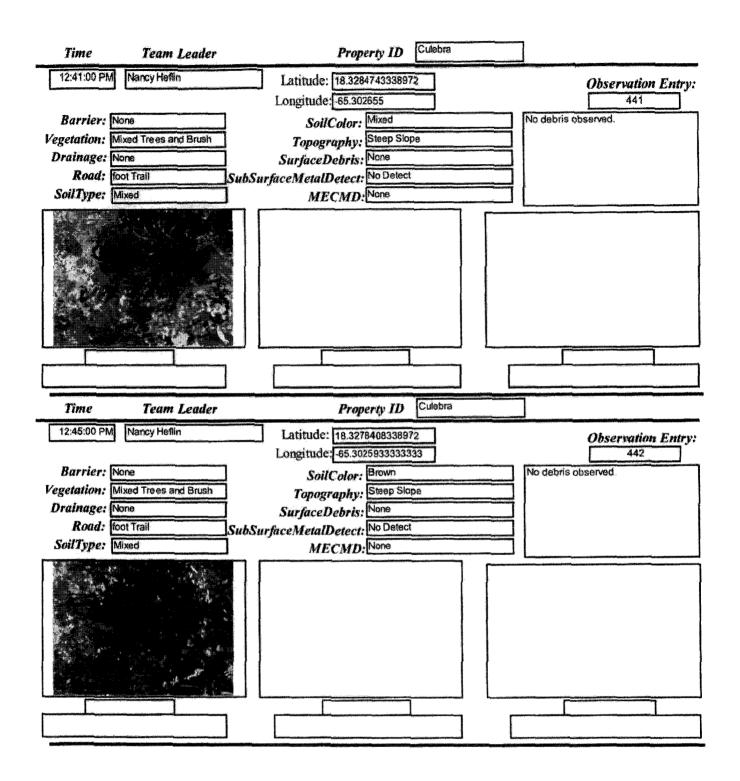


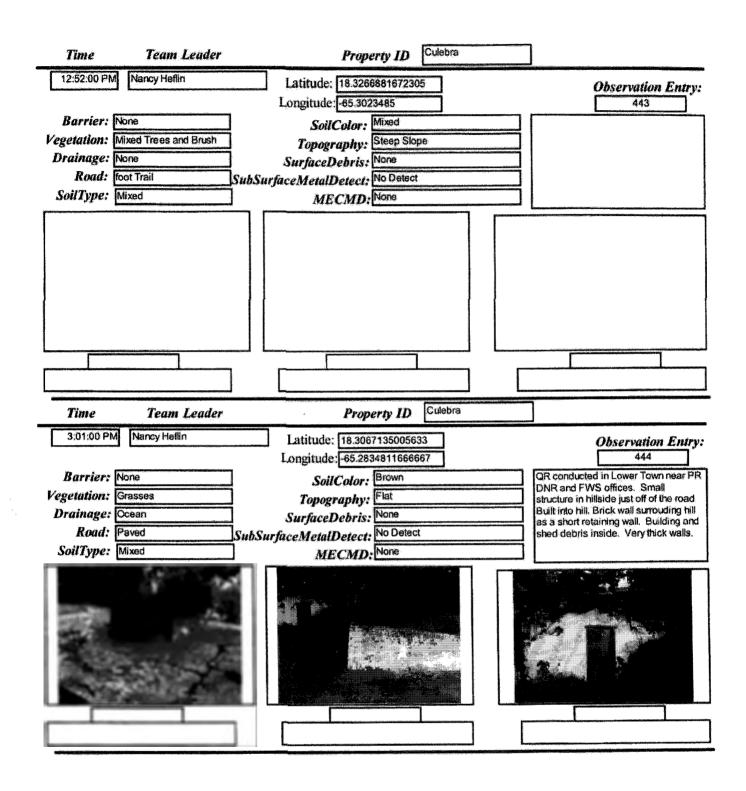


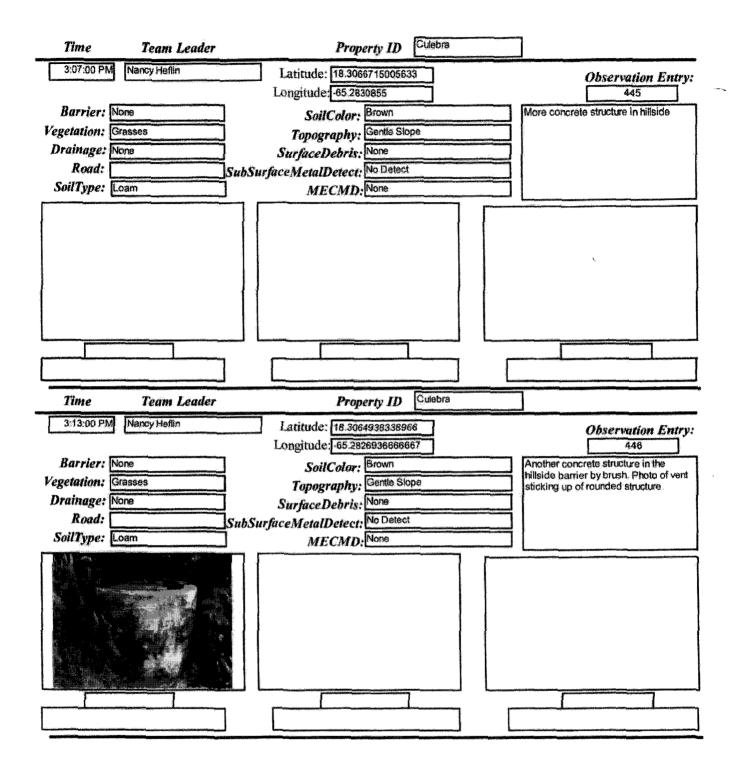


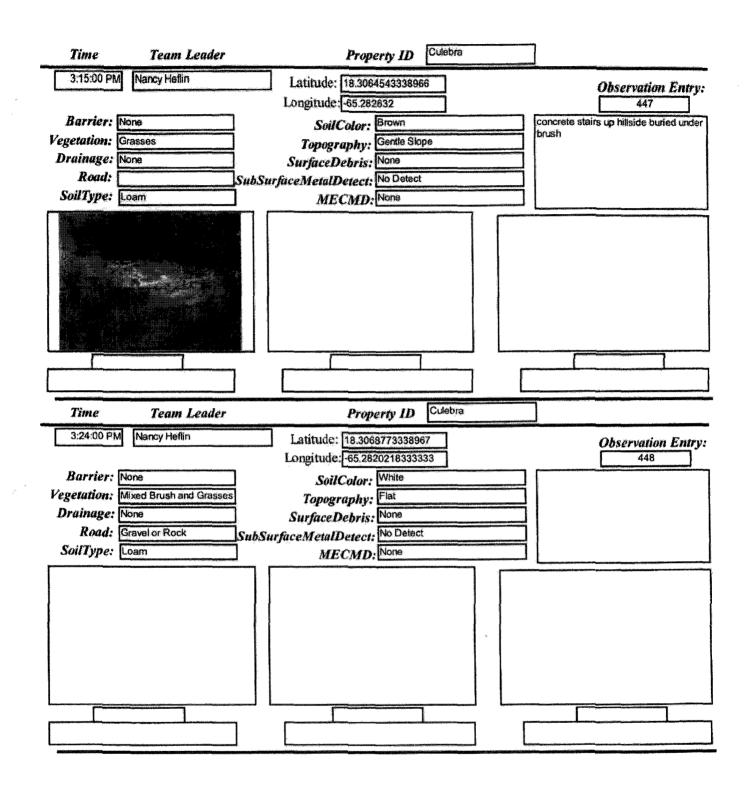


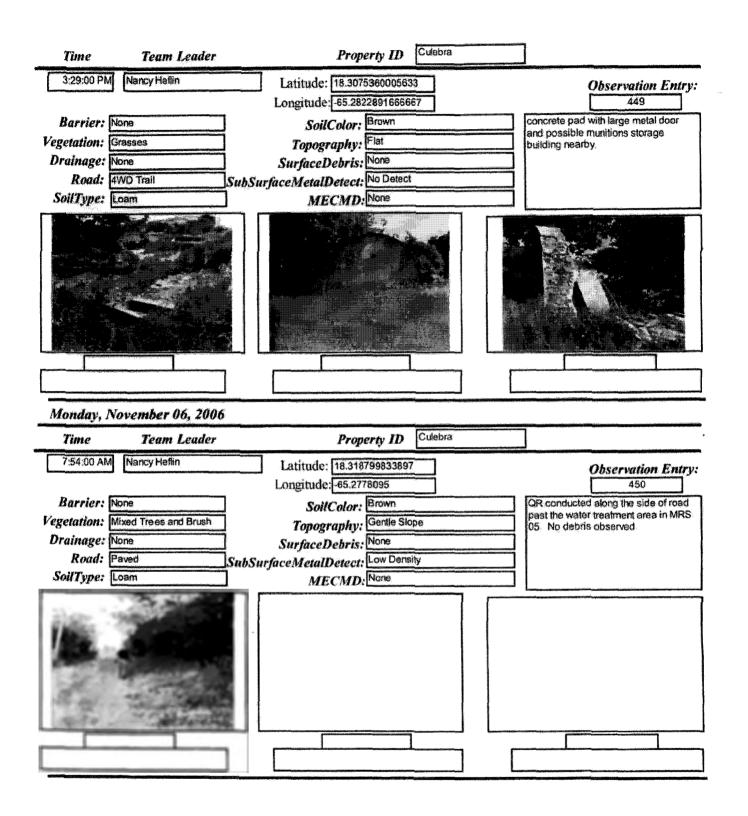


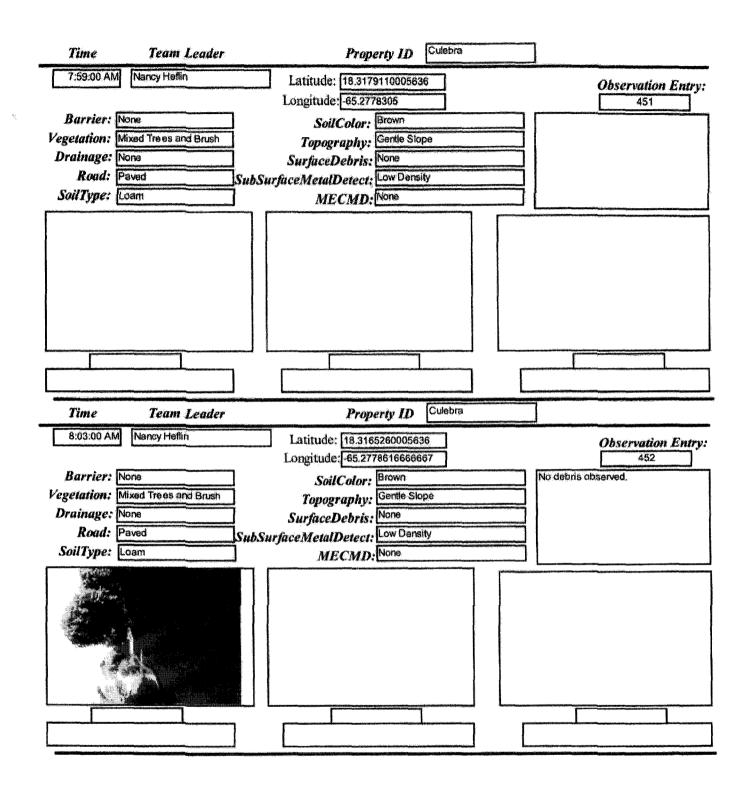


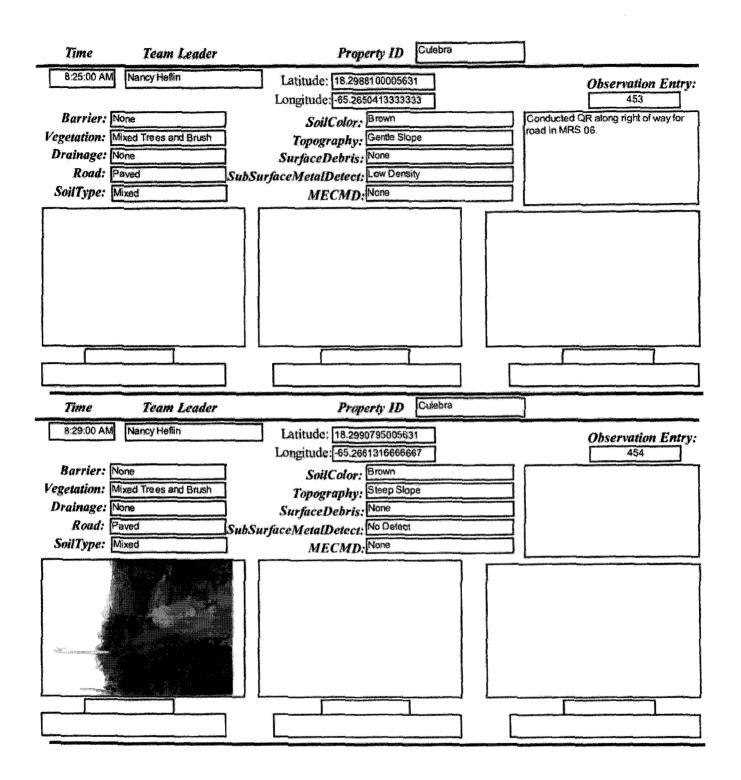


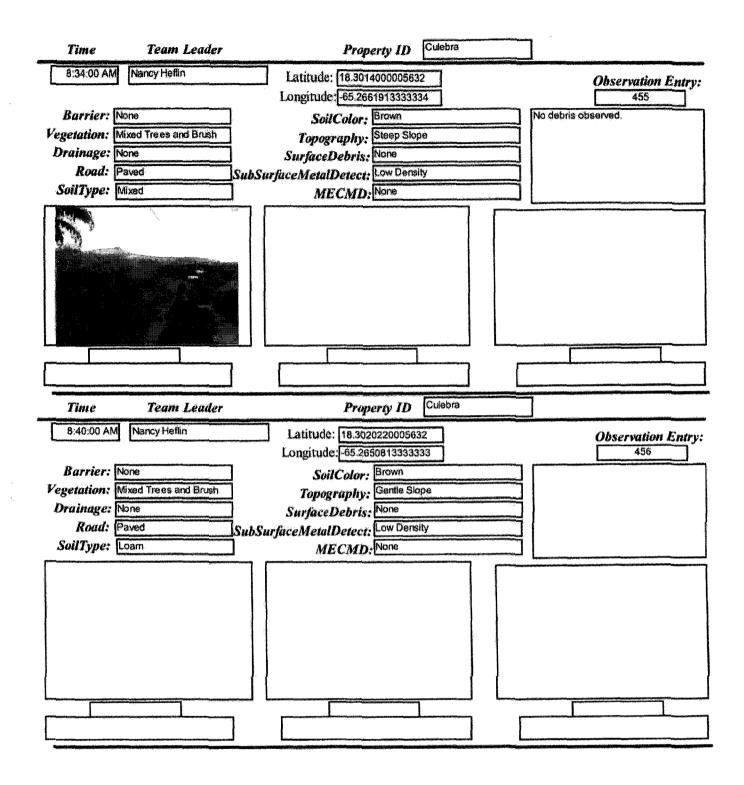


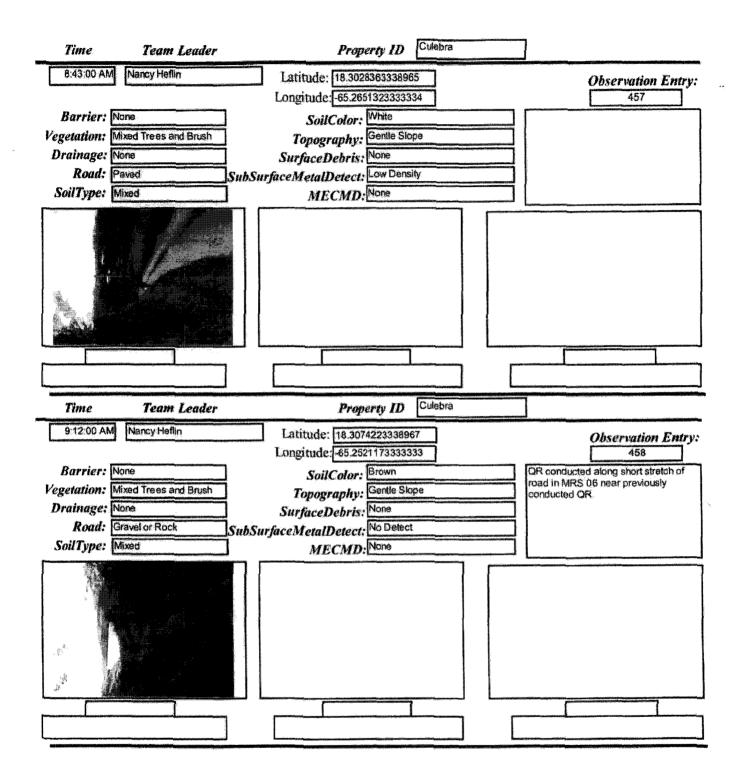


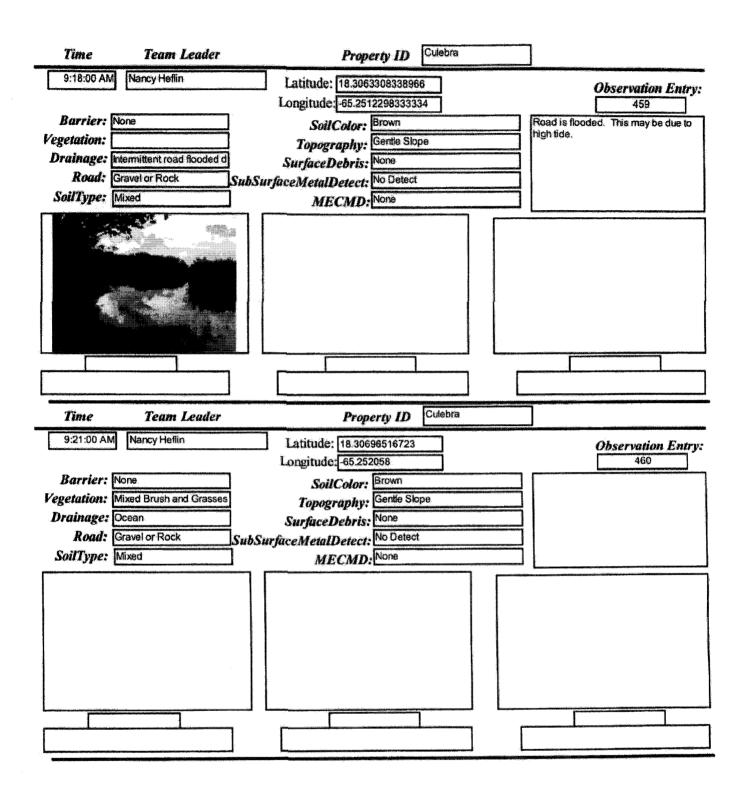


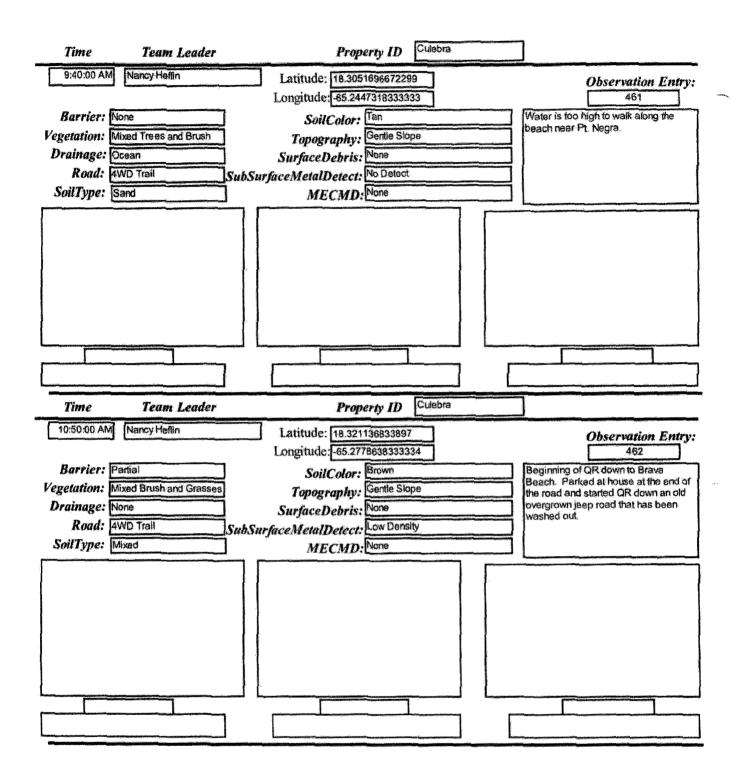


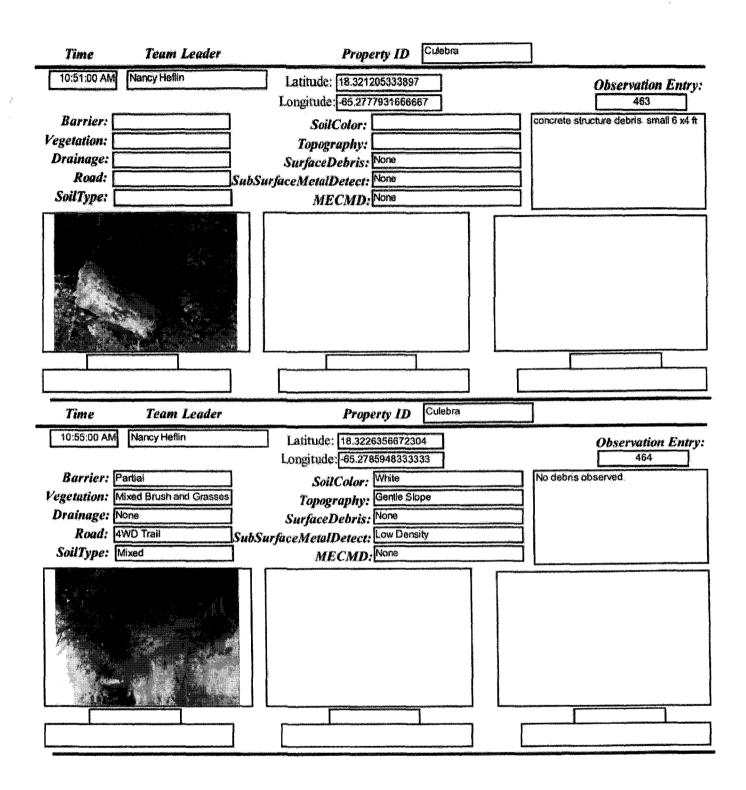


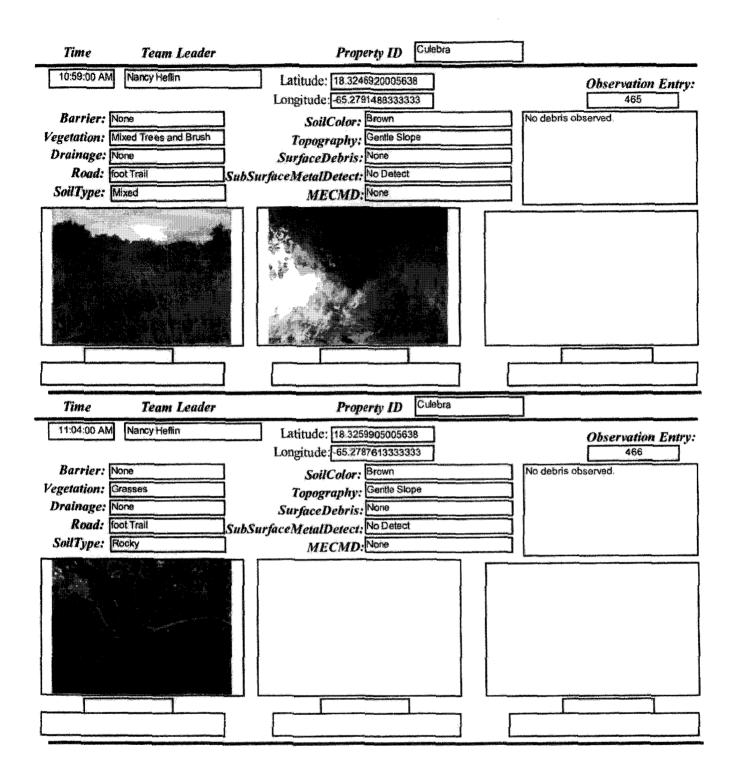


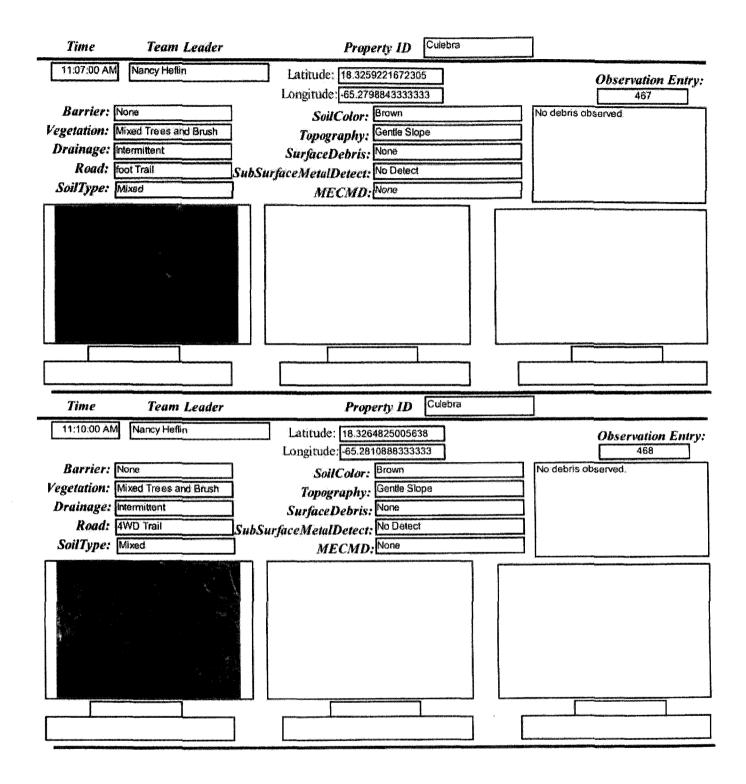


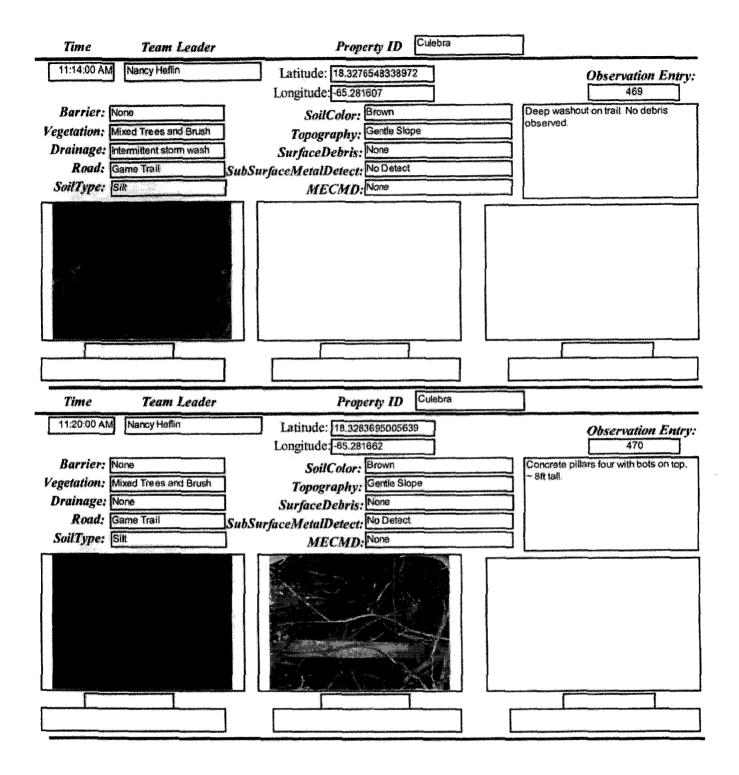


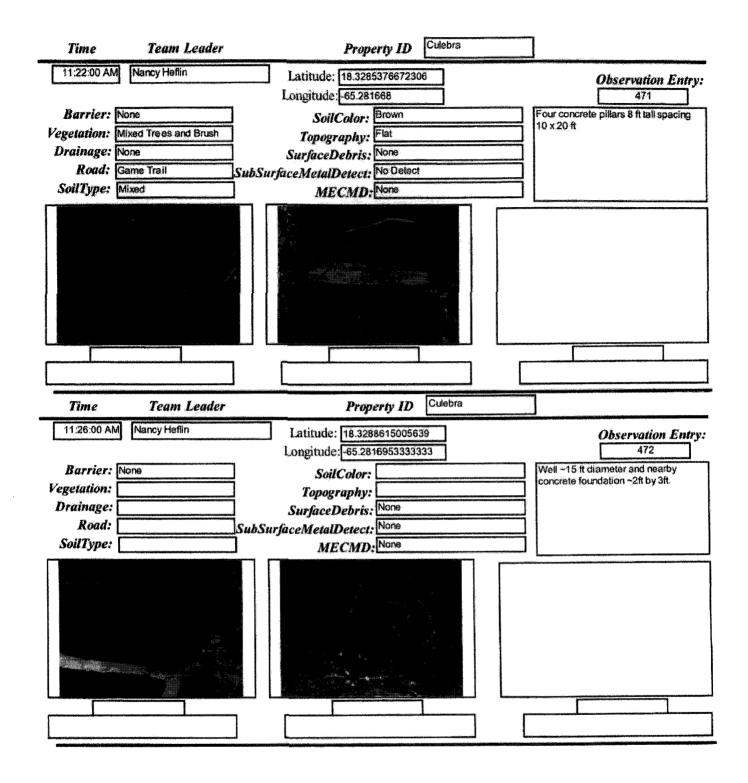


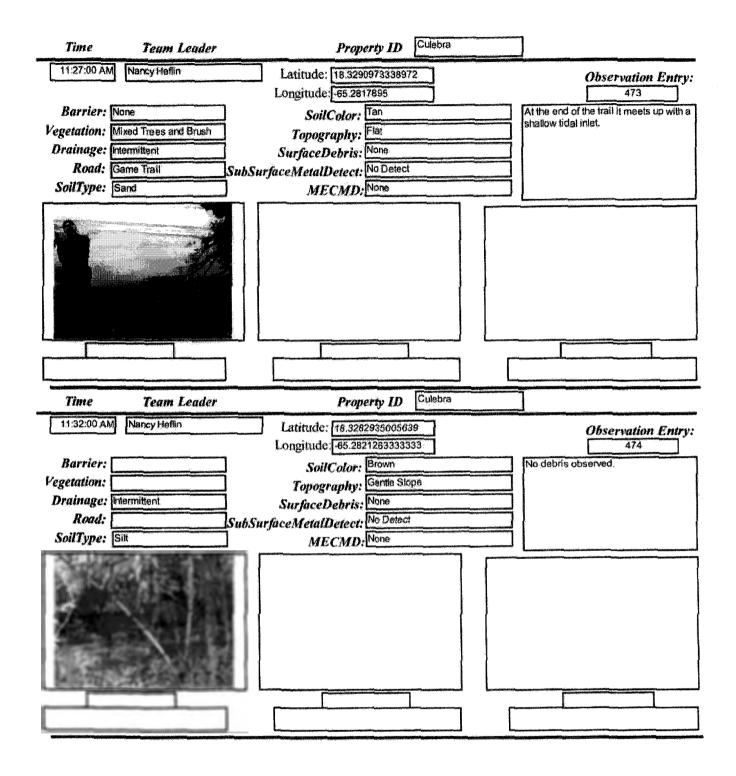


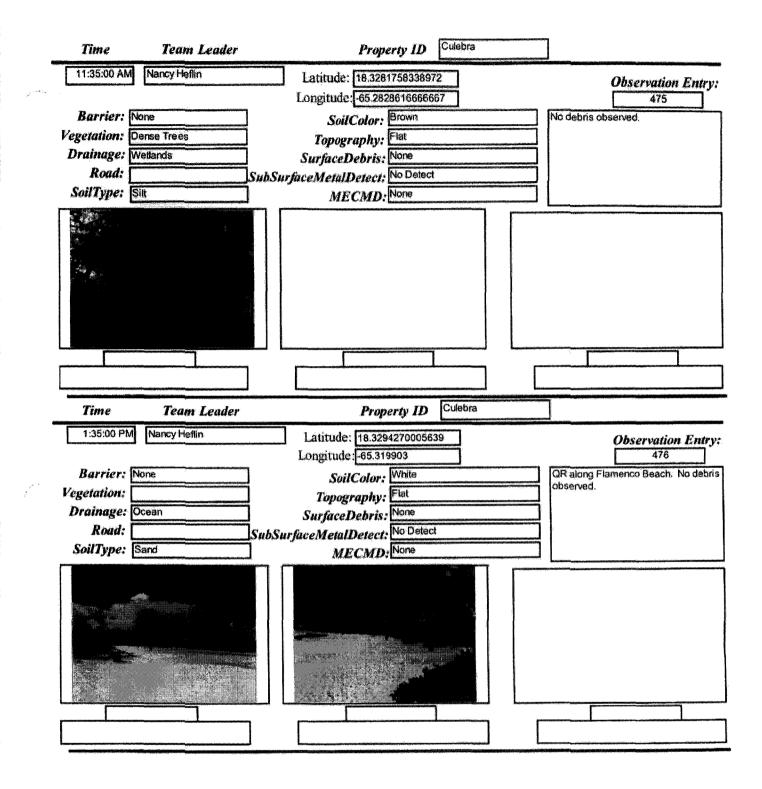


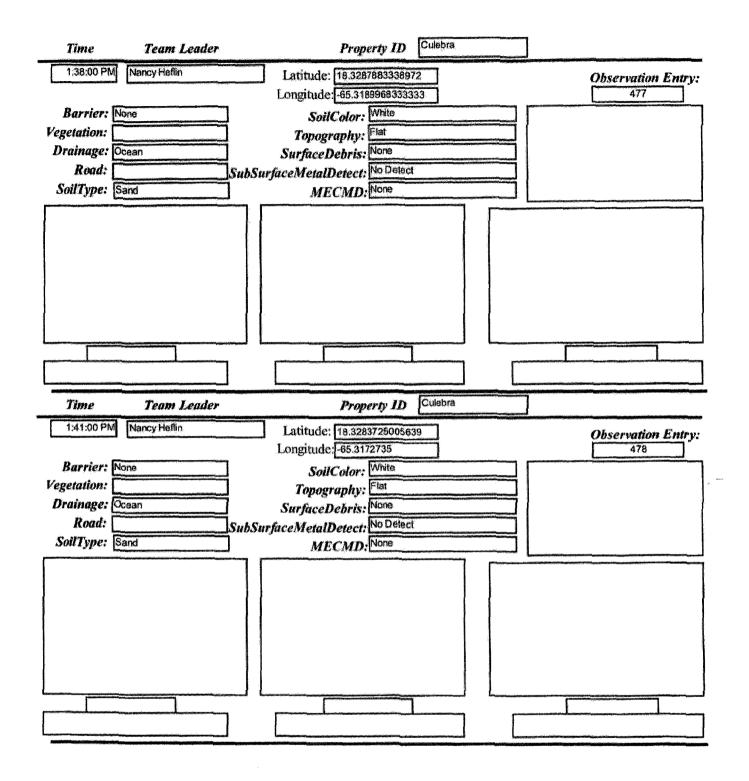


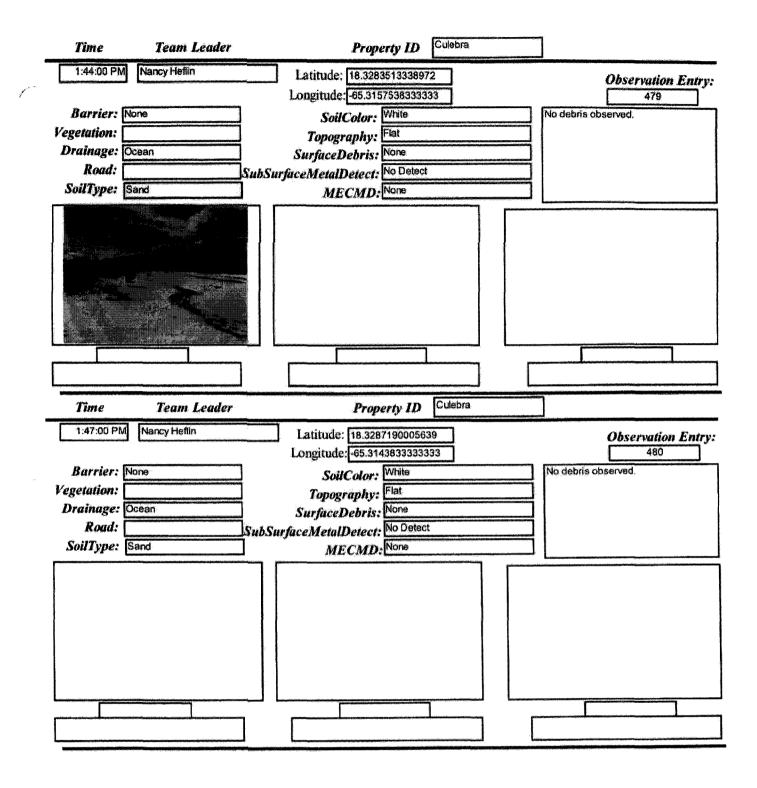


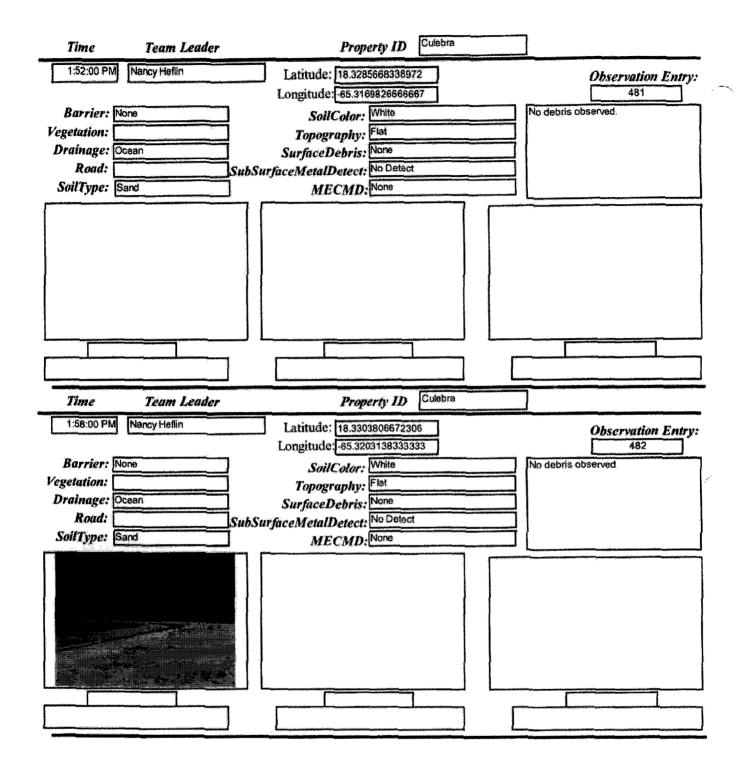












ļ

APPENDIX F

,

ANALYTICAL DATA

The electronic copy is included in the "Appendix F - Analytical Data" folder on enclosed CD.

.

1

.

1

APPENDIX G DATA VALIDATION REPORT

September 2007 Contract W912DY-04-D-0005

DATA VALIDATION SUMMARY REPORT

for samples collected from

CULEBRA ISLAND

Puerto Rico

Data Validation by: Katherine LaPierre

Parsons - Austin

INTRODUCTION

The following data validation summary report covers surface soil samples collected from Culebra Island, Puerto Rico on October 23 and 24, 2006. Samples were logged in under the following Sample Delivery Group (SDG):

D6J260350

Soil samples were analyzed for explosives and metals. The table below details the requested parameters for each sample. No field quality control (QC) samples were collected in association with this SDG.

All samples were collected by Parsons. All analyses were performed by STL-Denver following the procedures outlined in the Standard Subcontract and the Sampling and Analysis Addendum for the Southeast Region. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 4.6° C which is within the 2-6° C range recommended by the Work Plan.

Sample ID	Matrix	Explosives	Metals	Comments
CUL-05-SS-06-19	S	X	X	
CUL-06-SS-06-21	S	X	X	
CUL-09-SS-06-10	S	X	X	
CUL-14-SS-06-16	S	X	X	Ambient

SAMPLE IDs AND REQUESTED PARAMETERS

S = Surface soil

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the Project Work Plan. Information reviewed in the data packages included sample results; field and laboratory quality control results; calibrations; case narratives; raw data; cooler receipt forms, and chain-of-custody (COC) forms. The analyses and findings presented in this report are based on the reviewed information, and whether guidelines in the Work Plan were met.

Due to the flagging requirements of the electronic data deliverable (EDD) software, Automatic Data Review (ADR), the following rule was applied for flagging the data: If an analyte was detected in the method blank, the associated sample concentrations were examined. If the analyte was detected in a sample at a concentration similar to that found in the blank (five times the blank concentration for most analytes, or ten times the blank concentration for common laboratory contaminants), the reporting limit for that analyte was raised to the detected level and the result was flagged "U" for that particular sample.

Approval was also received from a United States Army Corps of Engineers (USACE) chemist for laboratory to use the historically developed control limits for the explosive analysis. See table below.

Analyte	LCS/MS/MSD Control Limits for Soil	RPD (%) for Soil
НМХ	53-115%	30
RDX	70-121%	30
1,3,5-Trinitrobenzene	47-131%	30
1,3-dinitrobenzene	69-128%	30
Nitrobenzene	59-150%	30
Tetryl	10-160%	30
Nitroglycerin	32-135%	30
2,4,6-Trinitrotoluene	58-130%	30
4-Amino-2,6-dinitrotoluene	60-133%	30
2-Amino-4,6-dinitrotoluene	_53-141%	30
2,4-Dinitrotoluene	61-128%	30
2,6-Dinitrotoluene	59-134%	30
3-Nitrotoluene	51-153%	30
PETN	28-178%	30
2-Nitrotoluene	55-147%	30
4-Nitrotoluene	65-146%	30

For metals, the control limits for accuracy are 80-120% for LCS, MS, and MSD. The precision control limits for the MS/MSD are RPD $\leq 20\%$.

EXPLOSIVES

General

The explosives portion of this SDG consisted of four (4) surface soil samples. The samples were collected on October 23 and 24, 2006 and were analyzed for the full list of explosives as specified in the Work Plan.

The explosives analyses were performed according to the laboratory's modification of USEPA SW846 Method 8321A. All samples in this SDG were analyzed following the

procedures outlined in the laboratory Standard Operation Procedure (SOP). All samples were prepared and analyzed within the holding time required by the method.

The explosives analyses were performed in a single analytical batch (#6305162) under a single initial calibration (ICAL).

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the laboratory control spike (LCS) sample and the surrogate spikes. No sample from this SDG was designated for MS/MSD analyses.

All LCS recoveries were within the laboratory historically developed control limits, except for the following:

Analyte	LCS %R	Criteria
Nitroglycerin	156	32-135%
HMX	122	53-115%

All samples were non-detect for the non-compliant analytes, so data quality was not affected by the high bias demonstrated by the LCS. The "Q" flags applied by the laboratory were removed.

All surrogate spike recoveries were within the laboratory historically developed control limits.

Precision

Precision could not be evaluated for this SDG because no duplicate analyses were performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All secondary source verification criteria were met.
- All continuing calibration verification (CCV) criteria were met, with a few exceptions. The CCV analyzed prior to the samples in this SDG had PETN recovered above criteria (70-130%) at 135%. In addition, the CCV analyzed after the samples in this SDG had PETN above criteria at 140% and nitroglycerin

above criteria at 131%. All samples were non-detect for these analytes, so the high bias demonstrated by the CCVs did not adversely affect data quality. The "Q" flags applied by the laboratory were removed.

• MDLs were developed within 12 months of sample analyses.

One method blank was associated with the explosives analyses in this SDG. The method blank was compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All explosives results for the samples in this SDG were considered usable. Thus, the completeness for the explosives portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP-AES METALS

General

The ICP-AES portion of this SDG consisted of four (4) surface soil samples. The samples were collected on October 23 and 24, 2006 and were analyzed for aluminum, calcium, iron, magnesium, potassium, sodium, strontium, and titanium.

The ICP-AES metals analyses were performed using USEPA SW846 Method 6010B. The samples in this SDG were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP-AES metals samples were digested in a single batch (#6304559) and analyzed in two batches under two different ICALs.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. No sample from this SDG was designated for MS/MSD analyses. However, the laboratory analyzed an MS/MSD on sample CUL-14-SS-06-16.

All LCS recoveries were within acceptance criteria.

All MS/MSD recoveries were within acceptance criteria with the following exceptions:

Metal	MS %R	MSD %R	Criteria
Aluminum	7450	3640	80-120%
Iron	2690	3420	80-120%
Titanium	0	(102)	80-120%

It should be noted that the concentrations of all three metals in the parent sample were significantly greater than the amount spiked, resulting in the anomalous recoveries. All non-compliant metals were flagged "J" in the parent sample in accordance with the

SAP.

G - 6

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples.

All MS/MSD RPDs were within criteria, with the exception of aluminum and titanium. These analytes were already qualified in the parent sample due to the non-compliant MS/MSD recoveries, so no additional corrective action was necessary.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All second source verification criteria were met. The initial calibration verification samples were prepared using a secondary source.
- All continuing calibration verification criteria were met.
- All interference check criteria were met.
- All RL check standard criteria were met.
- A dilution test (DT) was analyzed on sample CUL-14-SS-06-16. The DT failed to meet criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater:

Metal	%D	Criteria
Aluminum	- 13	
Calcium	16	
Iron	17	•
Magnesium	15	%D ≤ 10
Potassium	11	
Strontium	12	
Titanium	13	

• A post digestion spike (PDS) was analyzed on the same sample as the DT. All metals met criteria with the exception of those in **bold** below:

Metal	%R	Criteria
Aluminum	-143	
Calcium	84	
Iron	-436	
Magnesium	81	75-125%
Potassium .	93	
Strontium	80	
Titanium	-300	

The results for aluminum, iron, and titanium were flagged "J" in all samples in this SDG.

One method blank and several calibration blanks were associated with the ICP-AES analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metals results for the samples in this SDG were considered usable. The completeness for the ICP metals portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP/MS METALS

General

The ICP/MS portion of this SDG consisted of four (4) surface soil samples. The samples were collected on October 23 and 24, 2006 and were analyzed for antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc.

The ICP/MS metals analyses were performed using USEPA SW846 Method 6020. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP/MS metals samples were digested in a single batch (#6304560) and analyzed in four different batches under four different ICALs. It should be noted that samples CUL-14-SS-06-16 required a 10x dilution for manganese and a 5x dilution for beryllium. In addition, samples CUL-05-SS-06-19, CUL-06-SS-06-21, and CUL-09-SS-06-10 required a 5x dilution for beryllium and manganese. All other analyses were performed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. No sample from this SDG was designated for MS/MSD analyses. However, the laboratory analyzed an MS/MSD on sample CUL-14-SS-06-16. All LCS recoveries were within acceptance criteria.

All MS/MSD recoveries were within acceptance criteria with the following exceptions:

Metal	MS %R	MSD %R	Criteria
Antimony	3.8	4.1	80-120%
Arsenic	69	66	80-120%
Barium	448	0	80-120%
Chromium	65	40 ·	80-120%
Cobalt	175	19	80-120%
Copper	342	333	80-120%
Lead	206	0	80-120%
Manganese	12000	0	80-120%
Molybdenum	40	. 44	80-120%
Nickel	75	79	80-120%
Selenium	58	62	80-120%
Silver	76	78	80-120%
Vanadium	0	0	80-120%
Zinc	272	157	80-120%

It should be noted that the concentrations of barium, cobalt, copper, lead, manganese, vanadium, and zinc in the parent sample were significantly greater than the amount spiked, resulting in the anomalous recoveries. All non-compliant metals were flagged "J" in the parent sample in accordance with the SAP.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples.

All MS/MSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All instrument tune criteria were met.
- All metals met criteria in the RL check standard.

- All second source criteria were met. The ICV was prepared using a secondary source.
- All CCV criteria were met.
- All interference check (ICSA/ICSAB) criteria were met with one exception. Cadmium was detected in the ICSA samples above the RL (1.0µg/L). The ICSA analyzed at the beginning of the batch contained cadmium at 1.8µg/L and the ICSA analyzed at the end of the batch contained cadmium at 1.81µg/L. However, cadmium is a verified trace impurity in the ICSA standard, so no corrective action was necessary.
- A DT was analyzed on sample CUL-14-SS-06-16. The DT met criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater, except for those metals in **bold** below:

Metal	%D	Criteria
Arsenic	19	
Barium	15	-
Chromium	21	
Cobalt_	27	
Copper	28	%D ≤ 10
Lead	26	/01/ 3 10
Manganese	10	
Nickel	20	•
Vanadium	19	
Zinc	26	

• A PDS was analyzed on the same sample as the DT. All metals met criteria in the PDS, except those metals in **bold** below:

Metal	%R	Criteria
Arsenic	86	
Barium	88	
Chromium	82	
Cobalt	. 80	
Copper	71	75-125%
Lead	77	
Nickel	81	
Vanadium	84	
Zinc	80	

The results for copper were flagged "J" in all samples in this SDG.

One method blank and several calibration blanks were associated with the ICP/MS analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP/MS results for the samples in this SDG were considered usable. Therefore, the completeness for the ICP/MS portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

MERCURY

General

The mercury portion of this SDG consisted of four (4) surface soil samples. The samples were collected on October 23 and 24, 2006 and were analyzed for mercury.

The mercury analyses were performed using USEPA SW846 Method 7471A. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The samples for mercury analysis were digested and analyzed in a single batch (#6314183) under a single ICAL.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. No sample from this SDG was designated for MS/MSD analyses. However, the laboratory analyzed an MS/MSD on sample CUL-14-SS-06-16.

The LCS recovery was within acceptance criteria.

The MS/MSD recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples.

The MS/MSD RPD was within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All initial calibration criteria were met.
- All calibration verification criteria were met.
- All second source verification criteria were met. The ICV sample was prepared using a secondary source.
- A DT was analyzed on sample CUL-14-SS-06-16. The DT failed to meet criteria as follows:

Metal	%D	Criteria
Mercury	23	%D ≤ 10

According to the SAP, the corrective action is to perform MS analysis. Since the result of the MS analysis was compliant, no corrective action was necessary.

One method blank and several calibration blanks were associated with the mercury analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All mercury results for the samples in this SDG were considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

DATA USABILITY

All calculations were spot checked and verified. All data in this SDG are usable and all DQO requirements were met.

DATA VALIDATION SUMMARY REPORT

for samples collected from

CULEBRA ISLAND

Puerto Rico

Data Validation by: Katherine LaPierre

Parsons - Austin

INTRODUCTION

The following data validation summary report covers soil and sediment samples collected from Culebra Island, Puerto Rico on October 25 and 26, 2006. Samples were logged in under the following Sample Delivery Group (SDG):

D6J280175

Soil and sediment samples were analyzed for explosives and metals. The table below details the requested parameters for each sample. No field quality control (QC) samples were collected in association with this SDG.

All samples were collected by Parsons. All analyses were performed by STL-Denver following the procedures outlined in the Standard Subcontract and the Sampling and Analysis Addendum for the Southeast Region. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 3.4°C which is within the 2-6°C range recommended by the Work Plan.

Sample ID	Matrix	Explosives	Metals	Comments
CUL-05-SS-06-15	S	X	X	-
CUL-06-SS-06-20	S	X	X	
CUL-08-SE-06-05	SE	X	X	
CUL-08-SS-06-23	S	X	X	·
CUL-08-SS-06-24	S S	X	X	
CUL-09-SS-06-09	S	· X	X	

SAMPLE IDs AND REQUESTED PARAMETERS

S = Soil, SE = Sediment

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the Project Work Plan. Information reviewed in the data packages included sample results; field and laboratory quality control results; calibrations; case narratives; raw data; cooler receipt forms, and chain-of-custody (COC) forms. The analyses and findings presented in this report are based on the reviewed information, and whether guidelines in the Work Plan were met.

Due to the flagging requirements of the electronic data deliverable (EDD) software, Automatic Data Review (ADR), the following rule was applied for flagging the data:

If an analyte was detected in the method blank, the associated sample concentrations were examined. If the analyte was detected in a sample at a concentration similar to that found in the blank (five times the blank concentration for most analytes, or ten times the blank concentration for common laboratory contaminants), the reporting limit for that analyte was raised to the detected level and the result was flagged "U" for that particular sample.

Approval was also received from a United States Army Corps of Engineers (USACE) chemist for laboratory to use the historically developed control limits for the explosive analysis. See table below.

Analyte	LCS/MS/MSD Control Limits for Soil	RPD (%) for Soil
нмх	53-115%	30
RDX	70-121%	30
1,3,5-Trinitrobenzene	47-131%	30
1,3-dinitrobenzene	69-1 28%	30
Nitrobenzene	59-150%	30
Tetryl	10-160%	30
Nitroglycerin	32-135%	30
2,4,6-Trinitrotoluene	58-130%	30
4-Amino-2,6-dinitrotoluene	60-133%	30
2-Amino-4,6-dinitrotoluene	53-141%	30
2,4-Dinitrotoluene	61-128%	30
2,6-Dinitrotoluene	59-134%	30
3-Nitrotoluene	51-153%	30
PETN	28-178%	30
2-Nitrotoluene	55-147%	30
4-Nitrotoluene	65-146%	30

For metals, the control limits for accuracy are 80-120% for LCS, MS, and MSD. The precision control limits for the MS/MSD are RPD \leq 20%.

EXPLOSIVES

General

The explosives portion of this SDG consisted of five (5) surface soil samples and one (1) sediment sample. The samples were collected on October 25 and 26, 2006 and were analyzed for the full list of explosives as specified in the Work Plan.

The explosives analyses were performed according to the laboratory's modification of USEPA SW846 Method 8321A. All samples in this SDG were analyzed following the procedures outlined in the laboratory Standard Operation Procedure (SOP). All samples were prepared and analyzed within the holding time required by the method.

The explosives analyses were performed in a single analytical batch (#6305162) under a single initial calibration (ICAL).

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the laboratory control spike (LCS) sample and the surrogate spikes. No sample from this SDG was designated for MS/MSD analyses.

All LCS recoveries were within the laboratory historically developed control limits, except for the following:

Analyte	LCS %R	Criteria
Nitroglycerin	156	32-135%
HMX	122	53-115%

All samples were non-detect for the non-compliant analytes, so data quality was not affected by the high bias demonstrated by the LCS. The "Q" flags applied by the laboratory were removed.

All surrogate spike recoveries were within the laboratory historically developed control limits, with the exception noted below:

Sample ID	Surrogate	%R	Criteria
CUL-09-SS-06- 09	Nitrobenzene-d5	155	50-150%

All analytes in this sample were non-detect, so data quality was not affected by the high bias demonstrated by the surrogate recovery. The qualifiers applied by the laboratory were removed.

Precision

Precision could not be evaluated for this SDG because no duplicate analyses were performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All secondary source verification criteria were met.
- All continuing calibration verification (CCV) criteria were met, with a few exceptions. The CCV analyzed prior to the samples in this SDG had PETN recovered above criteria (70-130%) at 140% and nitroglycerin above criteria at 131%. In addition, the CCV analyzed after the samples in this SDG had PETN above criteria at 141% and nitroglycerin above criteria at 138%. All samples were non-detect for these analytes, so the high bias demonstrated by the CCVs did not adversely affect data quality. The "Q" flags applied by the laboratory were removed.
- MDLs were developed within 12 months of sample analyses.

One method blank was associated with the explosives analyses in this SDG. The method blank was compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All explosives results for the samples in this SDG were considered usable. Thus, the completeness for the explosives portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP-AES METALS

General

The ICP-AES portion of this SDG consisted of five (5) surface soil samples and one (1) sediment sample. The samples were collected on October 25 and 26, 2006 and were analyzed for aluminum, calcium, iron, magnesium, potassium, sodium, strontium, and titanium.

The ICP-AES metals analyses were performed using USEPA SW846 Method 6010B. The samples in this SDG were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP-AES metals samples were digested in a single batch (#6307586) and analyzed in two batches under two different ICALs. It should be noted that sample CUL-08-SS-06-24 was analyzed at a 5x dilution only due to matrix interference. All other analyses were performed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample.

All LCS recoveries were within acceptance criteria.

Precision

Precision could not be evaluated for this SDG because no duplicate analyses were performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All second source verification criteria were met. The initial calibration verification samples were prepared using a secondary source.
- All continuing calibration verification criteria were met.
- All interference check criteria were met.
- All RL check standard criteria were met.
- A dilution test (DT) was analyzed on a sample from a different client/site. The DT met criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater, with the exception of the metal in **bold** below:

Metal	%D	Criteria
Aluminum	8.8	
Calcium	-10	
Iron	3.7	
Potassium	7.8	%D ≤ 10
Magnesium	11	· ·
Strontium	10	
Titanium	7.6	

• A post digestion spike (PDS) was analyzed on the same sample as the DT. Magnesium met criteria in the PDS as follows:

	· · · ·		·
Metal %R Criteria	Metal	%R	Criteria

Magnesium 85	75-125%
--------------	---------

One method blank and several calibration blanks were associated with the ICP-AES analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metals results for the samples in this SDG were considered usable. The completeness for the ICP metals portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP/MS METALS

General

The ICP/MS portion of this SDG consisted of five (5) surface soil samples and one (1) sediment sample. The samples were collected on October 25 and 26, 2006 and were analyzed for antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc.

The ICP/MS metals analyses were performed using USEPA SW846 Method 6020. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP/MS metals samples were digested and analyzed in a single batch (#6307584) under a single ICAL. It should be noted that manganese required a dilution in the following samples: CUL-08-SS-06-23 (10x), CUL-05-SS-06-15 (10x), CUL-06-SS-06-20 (10x), CUL-08-SS-06-24 (10x), and CUL-09-SS-06-09 (5x). In addition, sample CUL-05-SS-06-15 required a 10x dilution for barium. All other analyses were performed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS.

All LCS recoveries were within acceptance criteria.

Precision

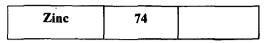
Precision could not be evaluated for this SDG because no duplicate analyses were performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and

• Examining laboratory blanks for cross contamination of samples during analysis.


The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All instrument tune criteria were met.
- All metals met criteria in the RL check standard.
- All second source criteria were met. The ICV was prepared using a secondary source.
- All CCV criteria were met.
- All interference check (ICSA/ICSAB) criteria were met with one exception. Cadmium was detected in the ICSA samples above the RL (1.0µg/L). The ICSA analyzed at the beginning of the batch contained cadmium at 1.7µg/L and the ICSA analyzed at the end of the batch contained cadmium at 1.5µg/L. However, cadmium is a verified trace impurity in the ICSA standard, so no corrective action was necessary.
- A DT was analyzed on a sample from a different client/site. The DT met criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater, except for those metals in **bold** below:

Metal	%D	Criteria
Arsenic	7.4	
Barium	4.0	
Beryllium	9.4	
Cadmium	5.7	
Chromium	9.7	
Cobalt	7.4	
Copper	13	%D ≤ 10
Lead	1.2	70D ≦ 10
Manganese	6.5	
Molybdenum	0.3	
Nickel	10	
Thallium	2.3	
Vanadium	m 1.7	
Zinc	15	

• A PDS was analyzed on the same sample as the DT. All metals met criteria in the PDS, except those metals in **bold** below:

-	,	
Metal	%R	Criteria
Copper	80	75-125%

The results for zinc were flagged "J" in all samples analyzed in the same batch.

One method blank and several calibration blanks were associated with the ICP/MS analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP/MS results for the samples in this SDG were considered usable. Therefore, the completeness for the ICP/MS portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

MERCURY

General

The mercury portion of this SDG consisted of five (5) surface soil samples and one (1) sediment sample. The samples were collected on October 25 and 26, 2006 and were analyzed for mercury.

The mercury analyses were performed using USEPA SW846 Method 7471A. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The samples for mercury analysis were digested and analyzed in a single batch (#6314186) under a single ICAL.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample.

The LCS recovery was within acceptance criteria.

Precision

Precision could not be evaluated for this SDG because no duplicate analyses were performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All initial calibration criteria were met.
- All calibration verification criteria were met.
- All second source verification criteria were met. The ICV sample was prepared using a secondary source.
- A DT was analyzed on a sample from a different client/site. The DT was not applicable because mercury was not detected at 25 times the MDL or greater in the parent sample.

One method blank and several calibration blanks were associated with the mercury analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All mercury results for the samples in this SDG were considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

DATA USABILITY

All calculations were spot checked and verified. All data in this SDG are usable and all DQO requirements were met.

DATA VALIDATION SUMMARY REPORT

for samples collected from

CULEBRA ISLAND

Puerto Rico

Data Validation by: Katherine LaPierre

Parsons - Austin

INTRODUCTION

The following data validation summary report covers soil and sediment samples collected from Culebra Island, Puerto Rico on October 27 and 28, 2006. Samples were logged in under the following Sample Delivery Group (SDG):

D6J310259

Soil and sediment samples were analyzed for explosives and metals. The table below details the requested parameters for each sample. The field quality control (QC) samples collected in association with this SDG included one matrix spike/matrix spike duplicate (MS/MSD) pair and two field duplicate samples. The field QC samples were analyzed for the same parameters as the associated parent sample.

All samples were collected by Parsons. All analyses were performed by STL-Denver following the procedures outlined in the Standard Subcontract and the Sampling and Analysis Addendum for the Southeast Region. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 3.1° C which is within the 2-6° C range recommended by the Work Plan.

Sample ID	Matrix	Explosives	Metals	Comments
CUL-04-SS-06-11	S	X	X	
CUL-05-SS-06-17	S	X	X	Parent for MS/MSD
CUL-05-SS-06-18	S	X	X	
CUL-06-SS-06-29	· S	X	X	FD of CUL-05-SS-06-17
CUL-04-SS-06-30	S	X	X	FD of CUL-04-SS-06-11
CUL-04-SE-06-03	SE	X	X	-
CUL-04-SE-06-04	SE	X	X	· · ·

SAMPLE IDs AND REQUESTED PARAMETERS

S = Soil, SE = Sediment

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the Project Work Plan. Information reviewed in the data packages included sample results; field and laboratory quality control results; calibrations; case narratives; raw data; cooler receipt forms, and chain-of-custody (COC) forms. The

September 2007 Contract W912DY-04-D-0005

analyses and findings presented in this report are based on the reviewed information, and whether guidelines in the Work Plan were met.

Due to the flagging requirements of the electronic data deliverable (EDD) software, Automatic Data Review (ADR), the following rule was applied for flagging the data:

If an analyte was detected in the method blank, the associated sample concentrations were examined. If the analyte was detected in a sample at a concentration similar to that found in the blank (five times the blank concentration for most analytes, or ten times the blank concentration for common laboratory contaminants), the reporting limit for that analyte was raised to the detected level and the result was flagged "U" for that particular sample.

Approval was also received from a United States Army Corps of Engineers (USACE) chemist for laboratory to use the historically developed control limits for the explosive analysis. See table below.

Analyte	LCS/MS/MSD Control Limits for Soil	RPD (%) for Soil
НМХ	53-115%	30
RDX	70-121%	30
1,3,5-Trinitrobenzene	47-131%	30
1,3-dinitrobenzene	69-128%	30
Nitrobenzene	59-150%	30
Tetryl	10-160%	30
Nitroglycerin	32-135%	30
2,4,6-Trinitrotoluene	58-130%	30
4-Amino-2,6-dinitrotoluene	60-133%	30
2-Amino-4,6-dinitrotoluene	53-141%	30
2,4-Dinitrotoluene	61-128%	30
2,6-Dinitrotoluene	59-134%	30
3-Nitrotoluene	51-153%	30
PETN	28-178%	30
2-Nitrotoluene	55-147%	30
4-Nitrotoluene	65-146%	30

For metals, the control limits for accuracy are 80-120% for LCS, MS, and MSD. The precision control limits for the MS/MSD are RPD \leq 20%.

September 2007 Contract W912DY-04-D-0005

EXPLOSIVES

General

The explosives portion of this SDG consisted of five (5) surface soil samples and two (2) sediment samples. The samples were collected on October 27 and 28, 2006 and were analyzed for the full list of explosives as specified in the Work Plan.

The explosives analyses were performed according to the laboratory's modification of USEPA SW846 Method 8321A. All samples in this SDG were analyzed following the procedures outlined in the laboratory Standard Operation Procedure (SOP). All samples were prepared and analyzed within the holding time required by the method.

The explosives analyses were performed in a single analytical batch (#6307587) under a single initial calibration (ICAL).

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the laboratory control spike (LCS) sample, MS/MSD samples, and the surrogate spikes. Sample CUL-05-SS-06-17 was designated for MS/MSD analyses.

All LCS, MS/MSD, and surrogate spike recoveries were within the laboratory historically developed control limits.

Precision

Precision was evaluated using the relative percent difference (RPD) obtained from the MS/MSD samples. Precision was further assessed by comparing the field duplicate analyte results. Sample CUL-06-SS-06-29 was collected as a field duplicate of sample CUL-05-SS-06-17, and sample CUL-04-SS-06-30 was collected as a field duplicate of sample CUL-04-SS-06-11.

All MS/MSD RPDs were within criteria.

All analytes were non-detect in both the parent and field duplicate sample for both field duplicate pair.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

• All initial calibration criteria were met.

- All secondary source verification criteria were met.
- All initial and continuing calibration verification criteria were met.
- MDLs were developed within 12 months of sample analyses.

One method blank was associated with the explosives analyses in this SDG. The method blank was compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All explosives results for the samples in this SDG were considered usable. Thus, the completeness for the explosives portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP-AES METALS

General

The ICP-AES portion of this SDG consisted of five (5) surface soil samples and two (2) sediment samples. The samples were collected on October 27 and 28, 2006 and were analyzed for aluminum, calcium, iron, magnesium, potassium, sodium, strontium, and titanium.

The ICP-AES metals analyses were performed using USEPA SW846 Method 6010B. The samples in this SDG were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP-AES metals samples were digested in a single batch (#6308104) and analyzed in two batches under two different ICALs. It should be noted that samples CUL-05-SS-06-17 and CUL-06-SS-06-29 were analyzed at a 2x dilution only due to matrix interference. In addition, calcium and strontium required a 10x dilution for samples CUL-04-SS-06-11 and CUL-04-SS-06-30 due to the high concentration present. All other analyses were performed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. Sample CUL-05-SS-06-17 was designated for MS/MSD analyses.

All LCS recoveries were within acceptance criteria.

All MS/MSD recoveries were within acceptance criteria with the following exceptions:

Metal	MS %R	MSD %R	Criteria
			hanness and the second s

Aluminum	8090	12300	80-120%
Iron	68500	0	80-120%
Titanium	2020	66	80-120%

It should be noted that the concentrations of all three metals in the parent sample were significantly greater than the amount spiked, resulting in the anomalous recoveries. All non-compliant metals were flagged "J" in the parent sample in accordance with the SAP.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples. Precision was further assessed by comparing the field duplicate analyte results. Sample CUL-06-SS-06-29 was collected as a field duplicate of sample CUL-05-SS-06-17, and sample CUL-04-SS-06-30 was collected as a field duplicate of sample CUL-04-SS-06-11.

All MS/MSD RPDs were within criteria.

All metals met criteria in both field duplicate pair as follows:

Metal	Parent Conc. (mg/kg)	FD Conc. (mg/kg)	RPD	Criteria
Aluminum	39000	34000	14	
Calcium	2200	2000	9.5	
Iron	78000	67000	15	
Magnesium	3000	3000	0	$RPD \le 70$
Potassium	2000	1900	5.1	$\operatorname{KID} \leq 10$
Sodium	270	· 250	7.7	
Strontium	29	27	7.1	
Titanium	2000	1500	29	

	CUI	-04-SS-06-11		
Metal	Parent Conc. (mg/kg)	FD Conc. (mg/kg)	RPD	Criteria
Aluminum	770	750	2.6	
Calcium	300000	300000	0	
Iron	1000	1000	0	
Magnesium	16000	15000	6.5	$RPD \le 70$
Potassium	250	230	8.3	$\mathbf{K} \mathbf{D} \leq 10$
Sodium	2100	2000	4.9	
Strontium	3300	3400	3.0	
Titanium	48	49	2.1	

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All second source verification criteria were met. The initial calibration verification samples were prepared using a secondary source.
- All continuing calibration verification criteria were met.
- All interference check criteria were met.
- All RL check standard criteria were met.
- A dilution test (DT) was analyzed on sample CUL-05-SS-06-17. The DT met criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater.

Metal	%D	Criteria
Aluminum	9.1	
Calcium	2.8	
Iron	· 10	%D ≤ 10
Magnesium	9.8	$\sqrt{00} \le 10$
Strontium	8.4	
Titanium	6.4	

• A post digestion spike (PDS) was not required.

One method blank and several calibration blanks were associated with the ICP-AES analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metals results for the samples in this SDG were considered usable. The completeness for the ICP metals portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP/MS METALS

General

The ICP/MS portion of this SDG consisted of five (5) surface soil samples and two (2) sediment samples. The samples were collected on October 27 and 28, 2006 and were analyzed for antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc.

The ICP/MS metals analyses were performed using USEPA SW846 Method 6020. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP/MS metals samples were digested and analyzed in a single batch (#6308103) under a single ICAL. It should be noted that samples CUL-05-SS-06-17, CUL-06-SS-06-29, and CUL-05-SS-06-18 required a 10x dilution for beryllium and manganese. All other analyses were performed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. Sample CUL-05-SS-06-17 was designated for MS/MSD analyses.

All LCS recoveries were within acceptance criteria.

All MS/MSD recoveries were within acceptance criteria with the following exceptions:

Metal	MS %R	MSD %R	Criteria
Antimony	2.1	1.8	80-120%
Arsenic	61	62	80-120%
Barium	0	217	80-120%
Chromium	128	-141	80-120%
Cobalt	(106)	193	80-120%
Copper	49	142	80-120%
Manganese	Q	9270	80-120%
Molybdenum	39	40	80-120%
Selenium	60	56	80-120%
Vanadium	0	0	80-120%
Zinc	.18	21	80-120%

() indicates the recovery met criteria.

It should be noted that the concentrations of barium, cobalt, copper, manganese, vanadium, and zinc in the parent sample were significantly greater than the amount spiked, resulting in the anomalous recoveries. All non-compliant metals were flagged "J" in the parent sample in accordance with the SAP.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples. Precision was further assessed by comparing the field duplicate analyte results. Sample CUL-06-SS-06-29 was collected as a field duplicate of sample CUL-05-SS-06-17, and sample CUL-04-SS-06-30 was collected as a field duplicate of sample CUL-04-SS-06-11.

All MS/MSD RPDs were within acceptance criteria.

All metals detected above the RL in both the parent and field duplicate samples met criteria in the field duplicate pair as follows:

CUL-05-SS-06-17					
Metal	Parent Conc. (mg/kg)	FD Conc. (mg/kg)	RPD	Criteria	
Arsenic	2.3	2.0	14		
Barium	180	170	5.7		
Beryllium	1.4	1.5	6.9		
Cadmium	0.17	0.16	6.1		
Chromium	18	17	5.7		
Cobalt	37	36	2.7		
Copper	160	150	6.5		
Lead	9.4	11	16	$RPD \le 70$	
Manganese	1900	1900	0		
Molybdenum	0.45	0.43	4.5		
Nickel	11	9.7	13		
Selenium	2.2	2.1	4.7		
Silver	0.31	0.33	6.3		
Vanadium	360	320	12		
Zinc	66	63	4.7		

CUL-04-SS-06-11

Metal	Parent Conc. (mg/kg)	FD Conc. (mg/kg)	RPD	Criteria
Arsenic	2.0	1.9	5.1	
Barium	12	11	8.7	
Chromium	10	9.5	. 5.1	• •
Cobalt	1.3	1.3	. 0.	
Copper	3.6	3.4	5.7	$RPD \le 70$
Lead	1.2	1.2	Q	
Manganese	60	59	1.7	
Nickel	4.6	6.1	28	
Vanadium	3.6	3.3	8.7	

September 2007 Contract W912DY-04-D-0005

Zinc	5.3	5.1	3.8	

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All instrument tune criteria were met.
- All metals met criteria in the RL check standard, with the exception of selenium which was recovered slightly above criteria (80-120%) at 122%. All sample concentrations were significantly greater than the amount spiked in the RL check standard, so no corrective action was deemed necessary.
- All second source criteria were met. The ICV was prepared using a secondary source.
- All CCV criteria were met.
- All interference check (ICSA/ICSAB) criteria were met with one exception. Cadmium was detected in the ICSA samples above the RL (1.0µg/L). The ICSA analyzed at the beginning of the batch contained cadmium at 1.6µg/L and the ICSA analyzed at the end of the batch contained cadmium at 4.1µg/L. However, cadmium is a verified trace impurity in the ICSA standard, so no corrective action was necessary.
- A DT was analyzed on sample CUL-05-SS-06-17. The DT met criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater, except for those metals in **bold** below:

Metal	%D	Criteria
Arsenic	29	
Barium	10	%D ≤ 10
Chromium	16	· .

Cobalt	23	
Copper	31	
Lead	10	
Manganese	0.6	
Nickel	21	
Vanadium	19	
Zinc	31	

• A PDS was analyzed on the same sample as the DT. All metals met criteria in the PDS, except those metals in **bold** below:

Metal	%R	Criteria
Arsenic	79	
Chromium	85	
Cobalt	92	
Copper	49	75-125%
Nickel	81	
Vanadium	60	
Zinc	63	

The results for copper, vanadium, and zinc were flagged "J" in all samples analyzed in the same batch.

One method blank and several calibration blanks were associated with the ICP/MS analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP/MS results for the samples in this SDG were considered usable. Therefore, the completeness for the ICP/MS portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

MERCURY

General

The mercury portion of this SDG consisted of five (5) surface soil samples and two (2) sediment samples. The samples were collected on October 27 and 28, 2006 and were analyzed for mercury.

The mercury analyses were performed using USEPA SW846 Method 7471A. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The samples for mercury analysis were digested and analyzed in a single batch (#6317513) under a single ICAL.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. Sample CUL-05-SS-06-17 was designated for MS/MSD analyses.

The LCS recovery was within acceptance criteria.

The MS/MSD recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples. Precision was further assessed by comparing the field duplicate analyte results. Sample CUL-06-SS-06-29 was collected as a field duplicate of sample CUL-05-SS-06-17, and sample CUL-04-SS-06-30 was collected as a field duplicate of sample CUL-04-SS-06-11.

The MS/MSD RPD was within acceptance criteria.

Mercury met criteria in both field duplicate pair as follows:

 		7-02-22-00-11		
Metal	Parent Conc. (mg/kg)	FD Conc. (mg/kg)	RPD	Criteria
Mercury	0.049	0.049	0	$RPD \le 70$

CUL-05-SS-06-17

CUL-04-SS-06-11

Metal	Parent Conc. (mg/kg)	FD Conc. (mg/kg)	RPD	Criteria
Mercury	0.029	0.029	0	$RPD \le 70$

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All initial calibration criteria were met.
- All calibration verification criteria were met.

- All second source verification criteria were met. The ICV sample was prepared using a secondary source.
- A DT was analyzed on sample CUL-05-SS-06-17. The DT was not applicable because mercury was not detected at 25 times the MDL or greater in the parent sample.

One method blank and several calibration blanks were associated with the mercury analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All mercury results for the samples in this SDG were considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

DATA USABILITY

All calculations were spot checked and verified. All data in this SDG are usable and all DQO requirements were met.

September 2007 Contract W912DY-04-D-0005

DATA VALIDATION SUMMARY REPORT

for samples collected from

CULEBRA ISLAND

Puerto Rico

Data Validation by: Katherine LaPierre

Parsons - Austin

INTRODUCTION

The following data validation summary report covers surface soil and sediment samples collected from Culebra Island, Puerto Rico on October 30 and 31, 2006. Samples were logged in under the following Sample Delivery Group (SDG):

D6K020196

Soil samples were analyzed for explosives and metals. The table below details the requested parameters for each sample. No field quality control (QC) samples were collected in association with this SDG.

All samples were collected by Parsons. All analyses were performed by STL-Denver following the procedures outlined in the Standard Subcontract and the Sampling and Analysis Addendum for the Southeast Region. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 3.4°C which is within the 2-6°C range recommended by the Work Plan.

Sample ID	Matrix	Explosives	Metals	Comments
CUL-05-SE-06-01	SE	X	X	
CUL-10-SS-06-07	S	X	X	
CUL-10-SS-06-08	S	·X	X	
CUL-11-SS-06-27	S	X	X	Ambient
CUL-13-SS-06-01	S ·	X	X	
CUL-13-SS-06-02	S.	X	X	

SAMPLE IDs AND REQUESTED PARAMETERS

S = Surface soil, SE = Sediment

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the Project Work Plan. Information reviewed in the data packages included sample results; field and laboratory quality control results; calibrations; case narratives; raw data; cooler receipt forms, and chain-of-custody (COC) forms. The analyses and findings presented in this report are based on the reviewed information, and whether guidelines in the Work Plan were met.

Due to the flagging requirements of the electronic data deliverable (EDD) software, Automatic Data Review (ADR), the following rule was applied for flagging the data:

If an analyte was detected in the method blank, the associated sample concentrations were examined. If the analyte was detected in a sample at a concentration similar to that found in the blank (five times the blank concentration for most analytes, or ten times the blank concentration for common laboratory contaminants), the reporting limit for that analyte was raised to the detected level and the result was flagged "U" for that particular sample.

Approval was also received from a United States Army Corps of Engineers (USACE) chemist for laboratory to use the historically developed control limits for the explosive analysis. See table below.

Analyte	LCS/MS/MSD Control Limits for Soil	RPD (%) for Soil
НМХ	<u>53-</u> 115%	30
RDX	70-121%	30
1,3,5-Trinitrobenzene	47-131%	30
1,3-dinitrobenzene	<u>6</u> 9-128%	30
Nitrobenzene	59-150%	30
Tetryl	10-160%	30
Nitroglycerin	32-135%	30
2,4,6-Trinitrotoluene	<u>5</u> 8-130%	30
4-Amino-2,6-dinitrotoluene	60-133%	30
2-Amino-4,6-dinitrotoluene	53-141%	30
2,4-Dinitrotoluene	61-128%	30
2,6-Dinitrotoluene	59-134%	30
3-Nitrotoluene	51-153%	30
PETN	28-178%	30
2-Nitrotoluene	55-147%	30
4-Nitrotoluene	65-146%	30

For metals, the control limits for accuracy are 80-120% for LCS, MS, and MSD. The precision control limits for the MS/MSD are RPD \leq 20%.

EXPLOSIVES

General

The explosives portion of this SDG consisted of five (5) surface soil samples and one (1) sediment sample. The samples were collected on October 30 and 31, 2006 and were analyzed for the full list of explosives as specified in the Work Plan.

The explosives analyses were performed according to the laboratory's modification of USEPA SW846 Method 8321A. All samples in this SDG were analyzed following the procedures outlined in the laboratory Standard Operation Procedure (SOP). All samples were prepared and analyzed within the holding time required by the method.

The explosives analyses were performed in a single analytical batch (#6313210) under a single initial calibration (ICAL).

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the laboratory control spike (LCS) sample and the surrogate spikes. No sample from this SDG was designated for MS/MSD analyses on the COC.

All LCS and surrogate spike recoveries were within the laboratory historically developed control limits.

Precision

Precision could not be evaluated for this SDG because no duplicate analyses were performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All secondary source verification criteria were met.
- All continuing calibration verification (CCV) criteria were met.
- MDLs were developed within 12 months of sample analyses.

One method blank was associated with the explosives analyses in this SDG. The method blank was compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All explosives results for the samples in this SDG were considered usable. Thus, the completeness for the explosives portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP-AES METALS

General

The ICP-AES portion of this SDG consisted of five (5) surface soil samples and one (1) sediment sample. The samples were collected on October 30 and 31, 2006 and were analyzed for aluminum, calcium, iron, magnesium, potassium, sodium, strontium, and titanium.

The ICP-AES metals analyses were performed using USEPA SW846 Method 6010B. The samples in this SDG were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP-AES metals samples were digested in a single batch (#6314382) and analyzed in one batch under a single ICAL.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample. No sample from this SDG was designated for MS/MSD analyses.

All LCS recoveries were within acceptance criteria.

Precision

Precision could not be evaluated for this SDG because no duplicate analyses ewre performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All second source verification criteria were met. The initial calibration verification samples were prepared using a secondary source.
- All continuing calibration verification criteria were met.

- All interference check criteria were met.
- All RL check standard criteria were met.
- A dilution test (DT) was analyzed on sample CUL-07-SS-06-25. The DT failed to meet criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater:

Metal	%D	Criteria
Aluminum	23	
Calcium	25	
Iron	26	
Magnesium	25	· %D ≤ 10
Potassium	22	
Strontium	24	
Titanium	21	

• A post digestion spike (PDS) was analyzed on the same sample as the DT. All metals met criteria with the exception of those in **bold** below:

Metal	%R	Criteria
Aluminum	-222	75-125%
Calcium	77	
Iron	-963	
Magnesium	76	
Potassium	84	
Strontium	74	
Titanium	-140	

The results for aluminum, iron, strontium, and titanium were flagged "J" in all samples in this SDG.

One method blank and several calibration blanks were associated with the ICP-AES analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metals results for the samples in this SDG were considered usable. The completeness for the ICP metals portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP/MS METALS

General

The ICP/MS portion of this SDG consisted of five (5) surface soil samples and one (1) sediment sample. The samples were collected on October 30 and 31, 2006 and were

analyzed for antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc.

The ICP/MS metals analyses were performed using USEPA SW846 Method 6020. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP/MS metals samples were digested in a single batch (#6314384) and analyzed in two different batches under two different ICALs. It should be noted that several samples required a dilution for the metals noted below:

Sample ID	Metal (dilution)
	Beryllium (5x)
CUL-05-SE-06-01	Nickel (25x)
	Vanadium (25x)
	Beryllium (5x)
CUL-11-SS-06-27	Manganese (25x)
	Vanadium (25x)
CUL-10-SS-06-07	Beryllium (5x)
COL-10-33-00-07	Manganese (25x)
	Beryllium (5x)
CUL-10-SS-06-08	Barium (25x)
COL-10-33-00-08	Manganese (25x)
	Vanadium (25x)
CUL-13-SS-06-01	Beryllium (5x)
COF-12-22-00-01	Manganese (10x)
CUL-13-SS-06-02	Beryllium (5x)
COT-12-22-00-02	Manganese (10x)

All other analyses were performed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample. No sample from this SDG was designated for MS/MSD analyses.

All LCS recoveries were within acceptance criteria.

Precision

Precision could not be evaluated for this SDG because no duplicate analyses were performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

Comparing the COC procedures to those described in the Work Plan;

- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All instrument tune criteria were met.
- All metals met criteria in the RL check standard.
- All second source criteria were met. The ICV was prepared using a secondary source.
- All CCV criteria were met.
- All interference check (ICSA/ICSAB) criteria were met with two exceptions. In the batch run December 4th and 5th, Cadmium was detected in the ICSA sample analyzed prior to the samples above the RL ($1.0\mu g/L$) at $1.1\mu g/L$. The ICSA analyzed at the end of the batch contained cadmium at $1.7\mu g/L$ and contained nickel above the RL ($3.5\mu g/L$) at $4.0\mu g/L$. Both of these metals are verified trace impurities in the ICSA standard, so no corrective action was necessary.
- A DT was analyzed on sample CUL-07-SS-06-25 from Culebra SDG D6K040234. The DT met criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater, except for those metals in **bold** below:

Metal	%D	Criteria
Arsenic	6.5	
Barium	0.9	
Chromium	9.5	
Cobalt	5.9	
Copper	7.4	%D ≤ 10
Lead	13	/0D <u>-</u> 10
Manganese	3.8	
Nickel	12	
Vanadium	7.5	
Zinc	16	

• A PDS was analyzed on the same sample as the DT. All metals met criteria in the PDS, except those metals in **bold** below:

Metal	%R	Criteria
Lead	90	
Nickel	83	75-125%
Zinc	72	

The results for zinc were flagged "J" in all samples in this SDG.

One method blank and several calibration blanks were associated with the ICP/MS analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP/MS results for the samples in this SDG were considered usable. Therefore, the completeness for the ICP/MS portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

MERCURY

General

The mercury portion of this SDG consisted of five (5) surface soil samples and one (1) sediment sample. The samples were collected on October 30 and 31, 2006 and were analyzed for mercury.

The mercury analyses were performed using USEPA SW846 Method 7471A. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The samples for mercury analysis were digested and analyzed in a single batch (#6317513) under a single ICAL.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample. No sample from this SDG was designated for MS/MSD analyses.

The LCS recovery was within acceptance criteria.

Precision

Precision could not be evaluated for this SDG because no duplicate analyses were performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All initial calibration criteria were met.
- All calibration verification criteria were met.
- All second source verification criteria were met. The ICV sample was prepared using a secondary source.
- A DT was analyzed on sample CUL-07-SS-06-25 from Culebra SDG D6K040234. The DT was not applicable because mercury was not detected above 25x the MDL in the parent sample.

One method blank and several calibration blanks were associated with the mercury analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All mercury results for the samples in this SDG were considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

DATA USABILITY

All calculations were spot checked and verified. All data in this SDG are usable and all DQO requirements were met.

DATA VALIDATION SUMMARY REPORT

for samples collected from

CULEBRA ISLAND

Puerto Rico

Data Validation by: Katherine LaPierre

Parsons - Austin

INTRODUCTION

The following data validation summary report covers surface soil and sediment samples collected from Culebra Island, Puerto Rico on November 1 and 2, 2006. Samples were logged in under the following Sample Delivery Group (SDG):

D6K040234

Soil samples were analyzed for explosives and metals. The table below details the requested parameters for each sample. The field quality control (QC) samples collected in association with this SDG included one field duplicate and one matrix spike/matrix spike duplicate (MS/MSD) pair. The field QC samples were analyzed for the same parameters as the associated field samples.

All samples were collected by Parsons. All analyses were performed by STL-Denver following the procedures outlined in the Standard Subcontract and the Sampling and Analysis Addendum for the Southeast Region. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 5.3°C which is within the 2-6°C range recommended by the Work Plan.

SAMPLE IDS AND REQUESTED PARAMETERS

Sample ID	Matrix	Explosives	Metals	Comments
CUL-07-SS-06-22	S	X	X	Ambient
CUL-07-SS-06-25	S S	X	X	Parent for MS/MSD
CUL-07-SS-06-26	S	X	X	
CUL-07-SS-06-32	S ·	X	X	FD of CUL-07-SS-06-25
CUL-07-SE-06-02	SE	X	X	
CUL-11-SS-06-04	S	X	X	
CUL-11-SS-06-05	S_	X. ·	X .	

S = Surface soil, SE = Sediment

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the Project Work Plan. Information reviewed in the data packages included sample results; field and laboratory quality control results; calibrations; case narratives; raw data; cooler receipt forms, and chain-of-custody (COC) forms. The

analyses and findings presented in this report are based on the reviewed information, and whether guidelines in the Work Plan were met.

Due to the flagging requirements of the electronic data deliverable (EDD) software, Automatic Data Review (ADR), the following rule was applied for flagging the data:

If an analyte was detected in the method blank, the associated sample concentrations were examined. If the analyte was detected in a sample at a concentration similar to that found in the blank (five times the blank concentration for most analytes, or ten times the blank concentration for common laboratory contaminants), the reporting limit for that analyte was raised to the detected level and the result was flagged "U" for that particular sample.

Approval was also received from a United States Army Corps of Engineers (USACE) chemist for laboratory to use the historically developed control limits for the explosive analysis. See table below.

Analyte	LCS/MS/MSD Control Limits for Soil	RPD (%) for Soil
НМХ	53-115%	30
RDX	70-121%	30
1,3,5-Trinitrobenzene	47-131%	30
1,3-dinitrobenzene	69-128%	30
Nitrobenzene	59-150%	30
Tetryl	10-160%	30
Nitroglycerin	32-135%	30
2,4,6-Trinitrotoluene	58-130%	. 30
4-Amino-2,6-dinitrotoluene	60-133%	30
2-Amino-4,6-dinitrotoluene	53-141%	30
2,4-Dinitrotoluene	61-128%	30
2,6-Dinitrotoluene	59-134%	30
3-Nitrotoluene	51-153%	30
PETN	28-178%	30
2-Nitrotoluene	55-147%	30
4-Nitrotoluene	65-146%	30

For metals, the control limits for accuracy are 80-120% for LCS, MS, and MSD. The precision control limits for the MS/MSD are RPD \leq 20%.

EXPLOSIVES

General

The explosives portion of this SDG consisted of six (6) surface soil samples and one (1) sediment sample. The samples were collected on November 1 and 2, 2006 and were analyzed for the full list of explosives as specified in the Work Plan.

The explosives analyses were performed according to the laboratory's modification of USEPA SW846 Method 8321A. All samples in this SDG were analyzed following the procedures outlined in the laboratory Standard Operation Procedure (SOP). All samples were prepared and analyzed within the holding time required by the method.

The explosives analyses were performed in a single analytical batch (#6313211) under a single initial calibration (ICAL).

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the laboratory control spike (LCS) sample, MS/MSD samples, and the surrogate spikes. Sample CUL-07-SS-06-25 from this SDG was designated for MS/MSD analyses on the COC.

All LCS and surrogate spike recoveries were within the laboratory historically developed control limits.

All MS/MSD recoveries were within the laboratory historically developed control limits with the following exceptions:

Analyte	MS %R	MSD %R	Criteria
1,3-Dinitrobenzene	58	(80)	69-128%
2,4,6-Trinitrotoluene	· 54	(75)	58-130%
2,4-Dinitrotoluene	59	(80)	61-128%
2,6-Dinitrotoluene	57	(78)	59-134%
4-Amino-2,6-dinitrotoluene	48	(68)	60-133%
4-Nitrotoluene	61	(82)	65.146%
HMX	50	(67)	53-115%
RDX	50	68	70-121%

() indicates the recovery met criteria.

It appeared that the MS may have been incorrectly spiked by the laboratory because all explosives had recoveries near 60%. All non-compliant analytes were flagged "UJ" in the parent sample in accordance with the SAP.

Precision

Precision was evaluated using the relative percent difference (RPD) obtained from the MS/MSD samples. Precision was further assessed by comparing the field duplicate analyte results. Sample CUL-07-SS-06-32 was collected as a field duplicate of sample CUL-07-SS-06-25.

All MS/MSD RPDs were within criteria, with the following exceptions:

Analyte	RPD	Criteria
1,3,5-Trinitrobenzene	32	
1,3-Dinitrobenzene	31	
2,4,6-Trinitrotoluene	33	
4-Amino-2,6-dinitrotoluene	35	000 < 20
Nitrobenzene	31	$RPD \leq 30$
Nitroglycerin	33	
PETN	33	
Tetryl	32	

All non-compliant samples were qualified "UJ" in the parent sample. The high RPDs are believed to be due to an incorrect spike in the MS as previously noted.

All analytes were non-detect in both the parent and field duplicate sample.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All secondary source verification criteria were met.
- All continuing calibration verification (CCV) criteria were met.
- MDLs were developed within 12 months of sample analyses.

One method blank was associated with the explosives analyses in this SDG. The method blank was compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All explosives results for the samples in this SDG were considered usable. Thus, the completeness for the explosives portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP-AES METALS

General

The ICP-AES portion of this SDG consisted of six (6) surface soil samples and one (1) sediment sample. The samples were collected on November 1 and 2, 2006 and were analyzed for aluminum, calcium, iron, magnesium, potassium, sodium, strontium, and titanium.

The ICP-AES metals analyses were performed using USEPA SW846 Method 6010B. The samples in this SDG were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP-AES metals samples were digested in a single batch (#6314382) and analyzed in one batch under a single ICAL. It should be noted that sample CUL-11-SS-06-05 required a 5x dilution for strontium. In addition, sample CUL-07-SE-06-02 required a 5x dilution for calcium, iron, magnesium, potassium, sodium, strontium and titanium. The laboratory case narrative indicated the dilutions were required due to high analyte concentrations and/or matrix interference.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. No sample from this SDG was designated for MS/MSD analyses. However, the laboratory analyzed an MS/MSD on sample CUL-14-SS-06-16.

All LCS recoveries were within acceptance criteria.

All MS/MSD recoveries were within acceptance criteria with the following exceptions:

Metal	MS %R	MSD %R	Criteria
Aluminum	3640	5510	· 80-120% ·
Calcium	79 [°]	74	80-120%
Iron	1630	454	80-120%
Magnesium	73	71	80-120%
Strontium	76	(83)	80-120%
Titanium	310	(100)	80-120%

() indicates the recovery met criteria.

It should be noted that the concentrations of aluminum, iron, and titanium in the parent sample were significantly greater than the amount spiked, resulting in the anomalous recoveries. All non-compliant metals were flagged "J" in the parent sample in accordance with the SAP.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples. Precision was further assessed by comparing the field duplicate analyte results. Sample CUL-07-SS-06-32 was collected as a field duplicate of sample CUL-07-SS-06-25. All MS/MSD RPDs were within criteria.

The RPD for all metals detected in the parent and field duplicate sample above the RL met criteria as follows:

TTT 07 00 07 05

Metal	Parent Conc. (mg/kg)	FD Conc. (mg/kg)	RPD	Criteria
Aluminum	26000	25000	3.9	
Calcium	4300	4000	7.2	
Iron	53000	53000	0	
Magnesium	2600	5200	7.4	$RPD \le 70$
Potassium	3900	3900	0	$\operatorname{Ri} D \leq 10$
Sodium	260	260	0	
Strontium	36	38	5.4	
Titanium	1300	1300	0	

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All second source verification criteria were met. The initial calibration verification samples were prepared using a secondary source.
- All continuing calibration verification criteria were met.
- All interference check criteria were met.
- All RL check standard criteria were met.
- A dilution test (DT) was analyzed on sample CUL-07-SS-06-25. The DT failed to meet criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater:

Metal	%D	Criteria
Aluminum	23	
Calcium	25	
Iron	26	
Magnesium	25	%D ≤ 10
Potassium	22	1 1
Strontium	24	
Titanium	21	

• A post digestion spike (PDS) was analyzed on the same sample as the DT. All metals met criteria with the exception of those in **bold** below:

Metal	%R	Criteria
Aluminum	-222	
Calcium	77	
Iron	-963	
Magnesium	76	75-125%
Potassium	84	
Strontium	74	
Titanium	-140	

The results for aluminum, iron, strontium, and titanium were flagged "J" in all samples in this SDG.

One method blank and several calibration blanks were associated with the ICP-AES analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metals results for the samples in this SDG were considered usable. The completeness for the ICP metals portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP/MS METALS

General

The ICP/MS portion of this SDG consisted of six (6) surface soil samples and one (1) sediment sample. The samples were collected on November 1 and 2, 2006 and were analyzed for antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc.

The ICP/MS metals analyses were performed using USEPA SW846 Method 6020. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP/MS metals samples were digested in a single batch (#6314384) and analyzed in two different batches under two different ICALs. It should be noted that several samples required a dilution for the metals noted below:

Sample ID	Metal (dilution)
CUL-07-SS-06-26	Beryllium (5x)
	Manganese (10x)
CUL-07-SS-06-22	Manganese (10x)
CUL-11-SS-06-04	Manganese (10x)
CUL-11-SS-06-05	Manganese (10x)
CUL-07-SS-06-25	Barium (10x)
COL-07-33-00-23	Manganese (10x)
CUL-07-SS-06-32	Copper (10x)
COL-07-03-00-32	Manganese (10x)

All other analyses were performed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. No sample from this SDG was designated for MS/MSD analyses. However, the laboratory analyzed an MS/MSD on sample CUL-14-SS-06-16.

All LCS recoveries were within acceptance criteria.

All MS/MSD recoveries were within acceptance criteria with the following exceptions:

Metal	MS %R	MSD %R	Criteria
Antimony	3.7	3.1	.80-120%
Arsenic	71	69	80-120%
Barium	326	0	. 80-120%
Beryllium	72	64	80-120%
Chromium	79	(103)	80-120%
Cobalt	0	0	80-120%
Copper	164	242	80-120%
Lead	0	0	80-120%
Manganese	40	44	80-120%
Molybdenum	45	41	80-120%
Selenium	72	74	80-120%
Vanadium	0.	469	80-120%
Zinc	0	0	80-120%

It should be noted that the concentrations of barium, cobalt, copper, lead, manganese, vanadium, and zinc in the parent sample were significantly greater than the

amount spiked, resulting in the anomalous recoveries. All non-compliant metals were flagged "J" in the parent sample in accordance with the SAP.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples. Precision was further assessed by comparing the field duplicate analyte results. Sample, CUL-07-SS-06-32 was collected as a field duplicate of sample CUL-07-SS-06-25.

All MS/MSD RPDs were within acceptance criteria.

The RPD for all metals detected above the RL in both the parent and field duplicate samples met criteria, with the exception of copper in **bold** below:

CUL-07-SS-06-25								
Metal	Parent Conc. (mg/kg)	FD Conc. (mg/kg)	RPD	Criteria				
Arsenic	1.7	1.7	0					
Barium	480	420	13					
Beryllium	0.93	0.89	4.4					
Chromium	8.0	8.7	8.4					
Cobalt	37	28	28					
Copper	200	- 600	100					
Lead	69	72	4.3	RPD ≤ 70				
Manganese	1400	1500	6.9	$\operatorname{Kr} D \leq 10$				
Molybdenum	0.24	0.27	12					
Nickel	8.9	8.9	0					
Selenium Silver	1.4	1.3	7.4					
	0.29	0.29	0					
Vanadium	210	220	4.7					
Zinc	190	240	23					

Copper was flagged "J" as estimated in the parent and field duplicate samples due to the high degree of variability demonstrated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All instrument tune criteria were met.
- All metals met criteria in the RL check standard.
- All second source criteria were met. The ICV was prepared using a secondary source.
- All CCV criteria were met.
- All interference check (ICSA/ICSAB) criteria were met with two exceptions. The ICSA analyzed at the beginning of the batch run December 4th contained cadmium above the RL (1.0µg/L) at 1.1µg/L. The ICSA analyzed at the end of the same batch contained cadmium above the RL at 1.7µg/L, and nickel above the RL (3.5µg/L) at 4.0µg/L. Both cadmium and nickel are verified trace impurities in the ICSA standard, so no corrective action was necessary.
- A DT was analyzed on sample CUL-07-SS-06-25. The DT met criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater, except for those metals in **bold** below:

Metal	%D	Criteria
Arsenic	6.5	
Barium	0.9	
Chromium	9.5	
Cobalt Copper	5. 9	
	7.4	%D ≤ 10
Lead	13	
Manganese	3.8	
Nickel	12	
Vanadium	7.5	Į
Zinc	16	

• A PDS was analyzed on the same sample as the DT. All metals met criteria in the PDS, except those metals in **bold** below:

Metal	%R	Criteria]
Lead	90		
Nickel	83	75-125%	
Zinc	72		}

The results for zinc were flagged "J" in all samples in this SDG.

One method blank and several calibration blanks were associated with the ICP/MS analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP/MS results for the samples in this SDG were considered usable. Therefore, the completeness for the ICP/MS portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

(

MERCURY

General

The mercury portion of this SDG consisted of six (6) surface soil samples and one (1) sediment sample. The samples were collected on November 1 and 2, 2006 and were analyzed for mercury.

The mercury analyses were performed using USEPA SW846 Method 7471A. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The samples for mercury analysis were digested and analyzed in a single batch (#6317514) under a single ICAL.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. No sample from this SDG was designated for MS/MSD analyses. However, the laboratory analyzed an MS/MSD on sample CUL-14-SS-06-16.

The LCS recovery was within acceptance criteria.

The MS/MSD recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples. Precision was further assessed by comparing the field duplicate analyte results. Sample CUL-07-SS-06-32 was collected as a field duplicate of sample CUL-07-SS-06-25.

The MS/MSD RPD was within criteria.

Both the parent and field duplicate sample were below the RL for mercury.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

• All initial calibration criteria were met.

- All calibration verification criteria were met.
- All second source verification criteria were met. The ICV sample was prepared using a secondary source.
- A DT was analyzed on sample CUL-07-SS-06-25. The DT was not applicable because mercury was not detected above 25x the MDL in the parent sample.

One method blank and several calibration blanks were associated with the mercury analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All mercury results for the samples in this SDG were considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

DATA USABILITY

All calculations were spot checked and verified. All data in this SDG are usable and all DQO requirements were met.

DATA VALIDATION SUMMARY REPORT

for samples collected from

CULEBRA ISLAND

Puerto Rico

Data Validation by: Katherine LaPierre

Parsons - Austin

INTRODUCTION

The following data validation summary report covers surface soil and sediment samples collected from Culebra Island, Puerto Rico on November 3 and 4, 2006. Samples were logged in under the following Sample Delivery Group (SDG):

D6K080307

Soil samples were analyzed for explosives and metals. The table below details the requested parameters for each sample. No field quality control (QC) samples were collected in association with this SDG.

All samples were collected by Parsons. All analyses were performed by STL-Denver following the procedures outlined in the Standard Subcontract and the Sampling and Analysis Addendum for the Southeast Region. The samples in this SDG were shipped to the laboratory in one cooler. The cooler was received by the laboratory at a temperature of 1.1°C which is below the 2-6° C range recommended by the Work Plan. However, all samples were received intact (not frozen) so no corrective action was necessary.

Sample ID	Matrix	Explosives	Metals	Comments
CUL-05-SS-06-12	S	X	X	
CUL-05-SS-06-14	S	X	X	
CUL-11-SS-06-03	S	X	X	
CUL-11-SS-06-06	S	X	. X	
CUL-14-SS-06-13	S S	X	X	

SAMPLE IDS AND REQUESTED PARAMETERS

S = Surface soil

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and verified following the guidelines outlined in the Project Work Plan. Information reviewed in the data packages included sample results; field and laboratory quality control results; calibrations; case narratives; raw data; cooler receipt forms, and chain-of-custody (COC) forms. The analyses and findings presented in this report are based on the reviewed information, and whether guidelines in the Work Plan were met.

Due to the flagging requirements of the electronic data deliverable (EDD) software, Automatic Data Review (ADR), the following rule was applied for flagging the data:

If an analyte was detected in the method blank, the associated sample concentrations were examined. If the analyte was detected in a sample at a concentration similar to that found in the blank (five times the blank concentration for most analytes, or ten times the blank concentration for common laboratory contaminants), the reporting limit for that analyte was raised to the detected level and the result was flagged "U" for that particular sample.

Approval was also received from a United States Army Corps of Engineers (USACE) chemist for laboratory to use the historically developed control limits for the explosive analysis. See table below.

Analyte	LCS/MS/MSD Control Limits for Soil	RPD (%) for Soil
НМХ	53-115%	30
RDX	70-121%	30
1,3,5-Trinitrobenzene	47-131%	30
1,3-dinitrobenzene	69-128%	30
Nitrobenzene	59-150%	30
Tetryl	10 -160%	30
Nitroglycerin	32-135%	30
2,4,6-Trinitrotoluene	58-130%	30
4-Amino-2,6-dinitrotoluene	60-133%	30
2-Amino-4,6-dinitrotoluene	53-141%	30
2,4-Dinitrotoluene	61-128%	30
2,6-Dinitrotoluene	59-134%	30
3-Nitrotoluene	51-153%	30
PETN	28-178%	30
2-Nitrotoluene	55-147%	30
4-Nitrotoluene	65-146%	30

For metals, the control limits for accuracy are 80-120% for LCS, MS, and MSD. The precision control limits for the MS/MSD are RPD \leq 20%.

EXPLOSIVES

General

The explosives portion of this SDG consisted of five (5) surface soil samples. The samples were collected on November 3 and 4, 2006 and were analyzed for the full list of explosives as specified in the Work Plan.

The explosives analyses were performed according to the laboratory's modification of USEPA SW846 Method 8321A. All samples in this SDG were analyzed following the procedures outlined in the laboratory Standard Operation Procedure (SOP). All samples were prepared and analyzed within the holding time required by the method.

The explosives analyses were performed in a single analytical batch (#6319615) under a single initial calibration (ICAL).

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from the laboratory control spike (LCS) sample and the surrogate spikes. No sample from this SDG was designated for MS/MSD analyses on the COC.

All LCS and surrogate spike recoveries were within the laboratory historically developed control limits.

Precision

Precision could not be evaluated for the explosives portion of this SDG because no duplicate analyses were performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All secondary source verification criteria were met.
- All continuing calibration verification (CCV) criteria were met.
- MDLs were developed within 12 months of sample analyses.

One method blank was associated with the explosives analyses in this SDG. The method blank was compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All explosives results for the samples in this SDG were considered usable. Thus, the completeness for the explosives portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP-AES METALS

General

The ICP-AES portion of this SDG consisted of five (5) surface soil samples. The samples were collected on November 3 and 4, 2006 and were analyzed for aluminum, calcium, iron, magnesium, potassium, sodium, strontium, and titanium.

The ICP-AES metals analyses were performed using USEPA SW846 Method 6010B. The samples in this SDG were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP-AES metals samples were digested in a single batch (#6318577) and analyzed in one batch under a single ICAL.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. No sample from this SDG was designated for MS/MSD analyses. However, the laboratory analyzed an MS/MSD on sample CUL-05-SS-06-12.

All LCS recoveries were within acceptance criteria.

All MS/MSD recoveries were within acceptance criteria with the following exceptions:

Metal	MS %R	MSD %R	Criteria
Aluminum	3470	4580	80-120%
Calcium	78	(88)	80-120%
Iron	1230	3140	80-120%
Magnesium	76	(83)	80-120%
Titanium	652	182	80-120%

() indicates the recovery met criteria.

It should be noted that the concentrations of aluminum, iron, and titanium in the parent sample were significantly greater than the amount spiked, resulting in the anomalous recoveries. All non-compliant metals were flagged "J" in the parent sample in accordance with the SAP.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples.

All MS/MSD RPDs were within criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

- All initial calibration criteria were met.
- All second source verification criteria were met. The initial calibration verification samples were prepared using a secondary source.
- All continuing calibration verification criteria were met.
- All interference check criteria were met.
- All RL check standard criteria were met.
- A dilution test (DT) was analyzed on sample CUL-05-SS-06-12. The DT met criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater, except those noted in **bold** below:

Metal	%D	Criteria
Aluminum	12	
Calcium	14	
Iron	· 14	
Magnesium	15	$\%D \le 10$
Potassium	7.1	
Strontium	13	
Titanium	8.9	

• A post digestion spike (PDS) was analyzed on the same sample as the DT. All metals met criteria with the exception of those in **bold** below:

Metal	%R	Criteria
Aluminum	-412	
Calcium	75	
Iron	-875	75-125%
Magnesium	74	
Strontium	78	

The results for aluminum, iron, and magnesium were flagged "J" in all samples in

this SDG.

One method blank and several calibration blanks were associated with the ICP-AES analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP-AES metals results for the samples in this SDG were considered usable. The completeness for the ICP metals portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

ICP/MS METALS

General

The ICP/MS portion of this SDG consisted of five (5) surface soil samples. The samples were collected on November 3 and 4, 2006 and were analyzed for antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc.

The ICP/MS metals analyses were performed using USEPA SW846 Method 6020. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The ICP/MS metals samples were digested in a single batch (#6318576) and analyzed in two different batches under two different ICALs. It should be noted that all samples required a 10x dilution for manganese. In addition, sample CUL-14-SS-06-13 required a 10x dilution for barium. All other analyses were performed undiluted.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample and MS/MSD samples. No sample from this SDG was designated for MS/MSD analyses. However, the laboratory analyzed an MS/MSD on sample CUL-05-SS-06-12.

All LCS recoveries were within acceptance criteria.

All MS/MSD recoveries were within acceptance criteria with the following exceptions:

Metal	MS %R	MSD %R	Criteria
Antimony	2.4	2.2	80-120%
Arsenic	76	76	80-120%
Barium	0	0	80-120%
Beryllium	70	72	80-120%
Copper	43	60	80-120%
Manganese	3680	2750	80-120%
Molybdenum	50	49	80-120%
Selenium	76	76	80-120%
Vanadium	142	139	80-120%
Zinc	0	0	80-120%

It should be noted that the concentrations of barium, manganese, vanadium, and zinc in the parent sample were significantly greater than the amount spiked, resulting in the anomalous recoveries. All non-compliant metals were flagged "J" in the parent sample in accordance with the SAP.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD samples.

All MS/MSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All instrument tune criteria were met.
- All metals met criteria in the RL check standard.
- All second source criteria were met. The ICV was prepared using a secondary source.
- All CCV criteria were met.
- All interference check (ICSA/ICSAB) criteria were met with two exceptions. The ICSA analyzed at the end of the batch contained cadmium above the RL (1.0µg/L) at 1.7µg/L, and nickel above the RL (3.5µg/L) at 4.0µg/L. Both

cadmium and nickel are verified trace impurities in the ICSA standard, so no corrective action was necessary.

• A DT was analyzed on sample CUL-05-SS-06-12. The DT met criteria for all metals detected in the parent sample at a concentration of 50 times the MDL or greater:

Metal	%D	Criteria
Barium	0.7	
Cobalt	6.5	
Copper	9.2	
Lead	0.9	%D ≤ 10
Manganese	5.3	
Vanadium	1.1	
Zinc	8.4	

• A PDS was not required.

One method blank and several calibration blanks were associated with the ICP/MS analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All ICP/MS results for the samples in this SDG were considered usable. Therefore, the completeness for the ICP/MS portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

MERCURY

General

The mercury portion of this SDG consisted of five (5) surface soil samples. The samples were collected on November 3 and 4, 2006 and were analyzed for mercury.

The mercury analyses were performed using USEPA SW846 Method 7471A. The samples were analyzed following the procedures outlined in the Work Plan. All samples were prepared and analyzed within the holding time required by the method and the Work Plan.

The samples for mercury analysis were digested and analyzed in a single batch (#6319536) under a single ICAL.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS sample.

The LCS recovery was within acceptance criteria.

Precision

Precision could not be evaluated for the mercury portion of this SDG because no duplicate analyses were performed.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the Work Plan;
- Comparing actual analytical procedures to those described in the Work Plan;
- Evaluating preservation and holding times; and
- Examining laboratory blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the Work Plan. The samples were prepared and analyzed within the holding times required by the method.

- All initial calibration criteria were met.
- All calibration verification criteria were met.
- All second source verification criteria were met. The ICV sample was prepared using a secondary source.
- A DT was analyzed on a sample from a different client and/or site. The DT was not applicable because mercury was not detected above 25x the MDL in the parent sample.

One method blank and several calibration blanks were associated with the mercury analyses in this SDG. All blanks were compliant.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All mercury results for the samples in this SDG were considered usable. The completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 95%.

DATA USABILITY

All calculations were spot checked and verified. All data in this SDG are usable and all DQO requirements were met.

APPENDIX H

GIS DATA

The electronic copy is included in the "Appendix H - GIS Data" folder on enclosed CD.

> September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

H-1

APPENDIX I

GEOPHYSICAL DATA

No geophysical data was collected at this site.

September 2007 Contract W912DY-04-D-0005

APPENDIX J

CONCEPTUAL SITE MODELS

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

J - 1

CONCEPTUAL SITE MODEL

ł

í

170

:

CULEBRA ISLAND, PUERTO RICO

Subsite/Range	Acreage*	Suspect Past DoD Activities	Potential MEC/MD Presence	MEC/MD Found Since Closure	Previous Investigation/Clearance Actions	Post-DoD Land Use and Current Land Use	Potential Receptors	Potentiat	Source Receptor Interaction	Field Sampling Qualitative Reconnaissance
MUNITIONS RESPONSE SITE (MRS) 02 IORTHWEST PENINSULA, ERRO BALCON, MORTAR	и <u>с. </u>								-	-
RANGE & ADJACENT CAYOS				i .	1.		i			
SHARK ROCK / CAYO TIBURON	1	Training Renge;	Mk 82, General Purpose Bornb, 500 lbs; 5-inch, Rocket,	None Documented	None	FWS - Wildlife Refuge Protected area for	Inaccessible	Unknown	Incomplete: no receptors and	Area was not accessible. No tar
		FLEX #2 1936, 75mm Impact Area and Impact Area #1	Zuni ⁽⁴⁾			seabirds.			unknown source	or debris was visib from the boat. No
	· · .	FLEX #5 1939, Artillery Fining near Mosquito Bay toward Culebrita, Whale Rock, Cayo Botella, Cayo Tiburon and Cayos Geniqui. Fire was not directed at NE Cay:	75mm ⁽⁵⁾							conducted on site.
PALADA CAY /	11	Training Range;	Mk 82, General Purpose	ASR Site Visit Teem	1995 ASR site visit	FWS - Wildlife Refuge	FWS	No MEC, MD, or	Possible:	QR conducted on
CAYO GENIQUI		FLEX #2 1936, 75mm Impact Area and Impact Area #1;	Bomb, 500 lbs; 5-inch, Rocket, Zuni; Torpedo, Gen, Navy ⁽⁴⁾	fin. Navy divers reported finding a Mk 27 HE torpedo	2006 SI QR	Protected area for Brown and Red Footed Boobies.	employees or researchers	small arms debris was observed during the SI.	infrequent receptors and possible source	beach area of Cay Geniqui.
		FLEX #5 1939, Artillery-Firing near Mosquito Bay toward Culebrita, Whale Rock, Cayo Botella, Cayo Tiburon and Cayos Geniqui. Fire was not directed at NE Cay. Impact area for Torpedo Range on north end of		east of Cayos Geniqui in January 1983				The ASR team observed munitions debris and MEC has been observed off shore near Cayo		
		Culebrita.	يستاسيه الاحتاد فالا					Geniqui.	•	
VHALE ROCK	· <1	FLEX #5 1939, Artillery Firing near Mosquito Bay toward Culebrita, Whale Rock, Cayo Botella, Cayo Tiburon and Cayos Geniqui. Fire was not directed at NE Cay;	Unknown	None Documented	None	FWS – Wildlife Refuge	Inaccessible		Incomplete: no receptors and unknown source	 Area was not accessible. No take or debris was visit from the boat. No conducted on site.
AJARITO CAY	3	Impact Area	Unknown	None Documented	- None	FWS – Wildlife Refuge	FWS employees or researchers	Unknown	Possible: infrequent receptors and unknown source	Area was not accessible. No ta or debris was visit from the boat. No conducted on site.
Cross Cay / Cayo Lobo	38	Training Range	Small Arms, General; 50 cal. Machine Gun; Mk 81 Mk 82 Mk 83 Mk 84, GP; 20mm HEI, MK(⁴⁴⁾	1997 EE/CA confirmed the presence of MEC. Several MEC (tems have been identified on surface and detonated.	1997 EE/CA 2006 surface clearance	FWS – Wildlife Refuge	FWS employees or researchers	MEC and MD known to be present and surface and likely remain in the subsyrface.	Complete: infrequent receptors end confirmed source	No QR or sampling was conducted du active surface removal.
BLACK ROCK/ EL MONO	0.3	Unknown - Possible Impact Area	, Unknown	None Documented	None	FWS – Wildlife Refuge	Inaccessible	Unknown	Incomplete: no receptors and unknown source	Area was not accessible. No tai or debris was visib from the boat. No conducted on site.
YERBA CAY	4	Unknown - Possible Impact Area	Unknown	None Documented	None	FWS – Wildlife Refuge	FWS employees or researchers	Unknown	Possible: infrequent receptors and	Aree was not accessible. No tai or debris was visit
		**************************************			1				unknown source	from the boat. No conducted on site.
AONO CAY	1	1924 75mm Target Area	75mm ⁽⁵⁾	None Documented	None	FWS – Wildlife Refuge	FWS employees or researchers	Unknown	Possible: infrequent receptors and unknown source	Area was not accessible. No tai or debris was visit from the boat. No conducted on site.

September 2007 Contract W912DY-04-D-0005

J - 2

1

Delivery Order 0008

CONCEPTUAL SITE MODEL, CONTINUED CULEBRA ISLAND, PUERTO RICO

1

Subsite/Range	Acreage'	Suspect Past DoD Activities	Potential MEC/MD Presence	MEC/MD Found Since Closure	Previous Investigation/Clearan ce Actions	Post-DoD Land Use and Current Land Use	Potential Receptors	Potential Source	Source Receptor Interaction	Field Sampling/ Qualitative Reconnaissance
IWIN ROCKS / LOS GEMELOS	0.5	Training Range; : 1922 7-inch, 8-inch and 3-inch Guns, 155mm, : 75mm, 37mm Guns; i	Mk B1 Mk 82 Mk 83 Mk 84,GP; 5-inch, Rocket, Zuni; 5-inch, Practice Rocket, Mk 8 ⁽⁴⁾ 7-inch, 8-inch, 3-inch, 155mm, 75mm, 37mm ⁽⁵⁾	None Documented	None	FWS - Wildlife Refuge	FWS employees or researchers	Unknown	Possible: infrequent receptors and unknown source	Aree was not accessible. No targe or debris was visible from the boat. No QR conducted on site.
WADATER	6	Treining Range	Marchi Marce Marce Marce Geracad Sancad Marchi Pancing Marchi 2 Marchi 2 Ma	VISA Sno Visti Vicem Iouro, NHE bomb Uragmants. SOEV FEICON tourid acounti. UK 730 wapoting charges and one Yomm projectic. SI SVV found two attractic date trave, many expanded Mario practice bombs, and vectors form an MX 80 scatter comb.	1995 ASR stoveti 1997 I I I AA 2003 SI OR	RWS-Wikilib Relage	FWS employces or researches	MD was elseaved during the St. MD and MEG protestly continued	Completes Infrequent reseptate end confirmed source	CRW is Contucted cound the Farine Her drug of the Farine Her drug of the Farine Her sample Werer School State Her Farine Her
FUNGY BOWL / ALCARAZZA	7	Training Range; 1922 7-Inch, 8-inch and 3-inch Guns, 155mm, 75mm, 37mm Guns;	 Construction of the second seco	High density of Ordnance with difficult and dangerous terrain.	None	FWS - Wildlife Refuge Protected area for Masked Boobies, Sooty Tems, Bridled Tems, Noddy Tems, and Zenaida.	Inaccessable	Unknown	Incomplete: no receptors and unknown source	Area was not accessible. No targe or debris was visible from the boat. No QF conducted on site.
THE WASHER		17(1922) v linčih Crinch Sindje krati Guna, USman, s 17. čenim SV nan Grins, n. t.	7 (hch, 9-Inch, 9-Inch, 165mm) 75mm, 87am(9)	None Documented	(None)	h (FWS=Wildlin Ranges	r FWS Kemployees	CUNKIOWN C.	Possible: interuents receptors and funknown source	Area was not - accessible into targe or debris was visible romune boat No QF conduction area
Plamenco/Northwest Peninsula	572	Navel Gunffre Target Area – Training Range; Air to Ground North – Training Range; Air to Ground South – Training Range; 1934 Fleet Problem XV, 30 cal, 3-inch anti- aircraft, 6-inch gun batteries, 75mm batteries, 6- inch naval weapons; FLEX #1 12-inch AP, 5-inch Flet Nose, 5-inch Com, 5-inch HE, 5-inch Naval, 6-inch flat nose, 4-inch Shrapnel, 3-inch HE, 3-inch Shrapnel; FLEX #2 July 1938 Demolition, 14-inch	Navel Gunfire Target–Small Arms, General; .50 cal. Machine Gun; Mk 31 Mk 82 Mk 83 Mk 84, GP; 105mm, HE, M1; B-Ind, AP, Mk 21; 16- inch, AP, Mk 5; 2.75-inch, Rockets General; Rocket, 11.75-inch, Tiny Tim, Mk 1 air to Ground North end South – Small Arms, General; .50 cal. Machine Gun; Mk 82, General Purpose bomb, 500 lb; 2, 75-	ASR Site Visit Team found part of an 11.75-inch Tiny Tim Aorial Rocket and a 5-inch rocket imbedded in the hillside. During Clearance at Flamence Bay Camp Ground 11 MEC lens were located and destroyed including, several 3-inch and 5-inch projectiles, a 25b practice bombs, and three 40mm.	Time Critical Removal Action on 3.66 acres at Flamenco Bay Campground, 1997 EE/CA 2001-2002 UXO Construction Support	FWS – Wildlife Refuge, DNR, campground, and beaches.	Publicly Accessible, Recreational users.	Confirmed MED and MD on surface and in the subsurface.	Complete: frequent receptors and confirmed source	No QR or MC Sampling: <u>Public Law</u> <u>93-166</u> (1973) DoD funds can not be used for MEC/ MC decontamination on Northwest Peninsula
•		projectile, and 12-inch shell also demolition of 3- inch shell and 100-lb bomb near Stream Point; FLEX #4 1938.50 cal and 81mm mortar, HE and practice fired at Stream Point; FLEX #5 1939 Aircraft Bombing and Machine Gun Range; Shore Bombardment at several targets along shoreline, Target 14 located mid-peninsula used for repahm and ariel bombing with iner bombs	 Fundbase bonno, Soo Ubs, 2:13- inch, Ricketts General, Rocket, 11.75-Inch, Tiny Tim, Mk 1 Mod 0⁽⁶⁾ 3-Inch, 6-inch and 75mm ⁽⁵⁾ 12-Inch AP, 5-inch flat nose, 5- inch Areval, 6-inch flat nose, 4- inch Shrapnel, 3-inch HE, 3- inch Shrapnel⁽⁶⁾ 	2001-2002 UXO Construction Support by Ellis recovered 249 MEC items. See Appendix L of SL Report or complete list of items. 1997 EE/CA confirmed the presence of MEC see Table 4.3 or SI Report						
	1	and rockets. ⁽⁷⁾	14-inch projectile, 12-inch shell, 3-inch shell and 100-lb bomb ⁽⁵⁾ .50 cal and 81mm mortar, HE and practice ⁽⁵⁾							

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

J - 3

Ń

1

CONCEPTUAL SITE MODEL, CONTINUED

1

ł

1

CULEBRA ISLAND, PUERTO RICO

		A general second s	-	CULEBRA ISLAND, P	UERTO RICO					
Subsite/Range	Acreage'	Suspect Past DoD Activities	Potential MEC/MD Presence	MEC/MD Found Since Closure	Previous Investigation/Clearan ce Actions	Post-DoD Land Use and Current Land Use	Potential Receptors	Potentia: Source	Source Receptor Interaction	Field Sampling/ Oualitative Reconnaissance
DOLPHIN HEAD/CERRO BALCON	30	FLEX #4 1938 .30, .50 cal and 81mm mortar, HE and practice fired at Surf Bey; direct fire and indirect fire at Combat Range No. 1 and the southerm slope of Dolphin Head, and slope of hill northwest of Dolphin Head.	3-inch, Mortar, HE, MK1; 4.2- inch, Mortar, HE, M329A1 ⁽⁴⁾ .30 cal, .50 cal and 81mm mortar, HE end practice ⁽⁵⁾	1935 a young boy was killed playing with UXO found at this range. ASR Site Visit Team found fragments of a 3-inch or 4.2- inch mortar round.	2006 removal action.	Private ownership, grazing, current and ongoing residential construction.	Publicly Accessible	MD and small arms debrts was observed in the vicinity of Cerro Balcon during the SI. MEC and MD have	Complete: infrequent receptors and confirmed source	• QR conducted near Cerro Balcon but not within active removal area. SS-18 was collected near this site.
				MEC and MD identified during active removal action.	· .			been confirmed on the surface and in the subsurface.		· · · · · · · · · · · · · · · · · · ·
MRS 03 FLAMENCO BAY WATER AREA RAC 1	195 (water)	FLEX #5 1939 75mm shrapnel firing position south of Flamenco Lagoon to the mouth of Flamenco Bay.	75mm Shrapnel ⁽⁵⁾	Errant munitions observed in the bay.	None	Recreational Boating, Scuba Diving, Swimming.	Publicly Accessible	Confirmed MD and possible MEC in bay.	Complete: frequent receptors and confirmed source	No QR or sampling was conducted in this MRS.
MRS 04 FLAMENCO LAGOON MANEUVER AREA RAC 1	550	FLEX #4 1938, Combat Range No. 2 direct fire 30 end .50 call., 81mm mortars, and emoke and indirect fire target at Combat Range #2; FLEX #4 1938 .50 cal and 81mm mortar. HE and	.30 cal, .50 cal, and 81mm mortars ⁽⁵⁾ .50 cal and 81mm mortar, HE	None Documented	2006 SI QR	 Private ownership, hotel, mostly undeveloped with some residential. Heavy recreational use at beach. 	Publicly Accessible	No MEC, MD, or small arms debris was observed during the SI.	Possible: frequent receptors and possible source	QR conducted along beach and around Legoon. SS-11, SE- 03, and SE-4
		FLEX #4 1938 50 cell and 81mm mortar, HE and practice fired at Surf Bay and Flamenco Beach; FLEX #5 1939 75mm shrapnel firing position south of Flamenco Lagoon to the mouth of Flamenco Bay.	and practice ⁽⁵⁾ 75mm Shrapnel ⁽⁵⁾	•				However, MEC and MD are present in MRS 02 near MRS 04 and presence of MEC or MD is possible.		collected.
MRS 05 MORTAR AND Combat Range Area RAC 1	2812	Possible 1924 Anti-Aircraft Fire on hills 325,310,200, 650, 204,108, and 191; FLEX #4 Target at Combat Range #1 and .50 cal Bimm morters on beaches F7 and F8 between Carenero PI, and PL Cabras;	.50 cal 81mm mortars(5) .30 cal, .50 cal and 81mm mortar, HE and practice(5) .75mm possible	Interviews indicate that a dud was found in this area that later killed Mr. Ricardo's brother Alberto. (3) Active removal action a Cerro Balcon includes land in MRS	Active removal action at Cerro Balcon outside MRS 02. 2005 SI QR	FWS – Wildlife Refuge, Private ownership, grazing	Publicly Accessible	MD and small arms debris was observed in tha vicinity of Cerro Balcon during the SI.	Complete: frequent receptors and confirmed source	QR conducted throughout MRS 05. Samples SS-12, SS- 14, SS-15, SS-17, SS-18, SS-19 and SE-1 collected.
• •	ï	FLEX #4 1938 .30, .50 cal and 81mm mortar, HE and practice fired at surf Bay, direct fire and indirect fire at Combat Range No. 1 and the southern slope of Dolphin Head, and slope of hill northwest of Dolphin Head; FLEX #5 1939 Combat Range #1 and #2, Anti-	· · ·	05.			1 1 2 4 4 4	MEC ¹ and MD have been confirmed in this area.	- - -	* *
	1 -	Boat Gun Firing at Carenero Point.	·		-	1	t tur marin a martin	i		
MRS 06 ARTILLERY FIRING AREA RAC 3	826	1914 3-inch Battery; FLEX #2 1936, 37mm gun position, Mosquito Bay shoretine;		One stray practice 20mm found on eastern Culebra Island within 1.5 mile radius of Culebrita-20mm Target. (3)	2006 SI QR	Private ownership, light residential	Publicly Accessible	No MEC, MD, or small arms debris was observed during the SI.	Complete: frequent receptors and confirmed source	QR conducted throughout MRS 06. Samples SS-20, and SS-21 collected.
	e.	FLEX #5 1939, Artillery Firing near Mosquito Bay toward Culebrita, Whale Rock, Cayo Botella, Cayo Tiburn and Cayos Geniqui. Fire was not directed at NE Cay; Beach Defensive Area #1 and #2 and AA Range into water near Area 06;	· · ·	\$ \$				Single MD item previously identified.	: ; ; ,	•
		FIEX #5 1939, 37mm rounds fired from beech at Mosquito Bay to moving target in water between Point Vaca and Snapper Shoals and shrapnel rounds fired at a floating target at Vellow Shoals.								

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

J - 4

ł

٦, -

CONCEPTUAL SITE MODEL, CONTINUED

CULEBRA ISLAND, PUERTO P	ฃ СО
--------------------------	-------------

				CULEBRA ISLAND, P	ULKIO NICO				· .	
Subsite/Range	Acreage"	Suspect Past DoD Activities	Potential MEC/MD Presence	MEC/MD Found Since Closure	Previous Investigation/Clearan ce Actions	Post-DoD Land Use and Current Land Use	Potential Receptors	Potential Source	Source Receptor Interaction	Field Sampling/ Qualitative Reconnaissance
IRS 07 CULEBRITA	375							! .		
RTILLERY IMPACT AREA					i			1	•	i kali sa sa
ADRONE CAY /	N/A	Training Range:	Mk 82, General Purpose	1973 EOD Search found	1973 EOD Clearance	FWS - Wildlife Refuge	Accessible by	MEC and MD have	Complete:	No QR or sampling
AYO BOTELLA	140		Bomb, 500 lbs; 5-inch, Rocket,	expended Mk 76 and Mk 106	1995 ASR site visit	1 WO - Wildline Holdge	persons,	been confirmed at	infrequent	was conducted in thi
		1924 75mm target area;	Zuni ⁽⁴⁾	practice bombs. Items were left in place. 1997			unknown	this site.	receptors and confirmed source	MRS.
	•	FLEX #2 1936, 75mm impact Area and impact Area #1	75mm ⁽⁵⁾		1997 EE/CA		frequency.		conninea source	; ·
		Aleawr	701111	ASR Site Visit Team observed expended practice			· .			the second second
		• -		 bomb end fragments from HE 			¥	i .		5
		•		bombs.						•
· ·		· ·	•	1997 EE/CA confirmed the	•.					ŧ.
	2	·		presence of MEC.			1			
		A CONTRACTOR OF			5		5	* I		
ULEBRITA ISLAND	598	, Training Range;	Smail Arms, General; .50 cal.	1997 EE/CA confirmed the	1995 ASR site visit	FWS - Wildlife Refuge,	Publicly	MD was observed	Complete: frequent	QR conducted
		FLEX #2 1936, 75mm Impact Area and Impact	Machine Gun; 20mm HEI,	presence of MEC.	1997 EE/CA.	Recreational boating area,	Accessible:	during the SI.	receptors and	 throughout MRS 06. SS-25, SS-26, and
		Area #1	MkI ⁽⁴⁾	2006 SI QR identified a	2006 SI QR	and popular beach.	accessed by boaters, hikers,	. MEC and MD have	confirmed source	SE-02 collected.
		FLEX #5 1939, Artillery Firing near Mosquito Bay	75mm ⁽⁵⁾	; mechanical time fuze,	2000 51 QR		and FWS	been confirmed at this site.	1	Ambient sample SS-
1		; toward Culebma, whale Rock, Cayo Botella,	· · ·	: · · ·			employees regularly.	0115 5209.		22 collected on
1		¹ Cayo Tiburon and Cayos Geniqui. Fire was not i directed at NE Cay;			•		regulariy.		1	Culebrita.
		Lighthouse on Southern side of the island.		İ				ł		•
		والمتبابية يستوبين الارامينية والمتسوي			· · · · · · · · · · · · · · · · · · ·		31.7.7.7.7.7.	····		
MRS 08 CAYO NORTE IMPACT AREA NAC 3	306	FLEX #2 1936, Artillery Impact Area # 2.	Unknown	MEC items seen in the water near the eastern end of Cayo Norte.	2006 SI QR	2 full-time resident eastern side	Residents and visitors	No MEC, MD, or small arms debris was observed	Possible: infrequent receptors and unknown source	QR conducted throughout MRS 08. SS-23, SS-24, and
		· · · · · · · · · · · · · · · · · · ·	•			1 · · · · · · · · · · · · · · · · · · ·	9	during the SI.		SE-05 collected.
					• •	:	é 2	. MEC present off shore on eastern end of Cayo Norte		•
		-		~			1 1	i	·	
ARS 09	328	1914 5-inch battery;	5-inch(5)	2006 SI QR identified a fin	2006 SI QR	DNR, Residential, Frequent	Publicly	MD was observed	Complete: frequent	QR conducted
OLDADO PT. MORTAR AND		FLEX #1 1935, .30, .45 and .50 cat, 37, 75 and	.30 cal, .45 cal, .50 cal, 37mm,	set; likely from a mortar.		anchoring of boats.	Accessible	during the SI.	receptors and likely source	throughout MRS 09, SS-10 and SS-09
RAC 2		155mm, 3-inch;	75mm, 155mm, 3-inch (5)				i	Extensive historical record of training	, oralla	collected.
		FLEX #2 1936, 30-lb frag, 100-lb HE, and 1000	30-Ib frag bornb, 100-Ib HE			,		indicates MEC and		
		 Ib bombs; Possible 1924 Anti-Aircraft Fire on hill 200; 	bomb, 1000 lb bomb(5)	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	,	:	1	MD are probable in		
1			1					this area.	1	
:		FLEX #5 1939 Marine Defensive Area #1 and Aircraft Bombing and Machine Gun Range;			1					
		1938 Mortar Firing from Boats to Shore.			1 1		i	2 .		-
lifie Range South -	N/A	Small Arms Range	Small Arms, General(4)	None Documented	None	DNR. Residential	Publiciv	No MEC, MD, or	Incomplete:	" QR conducted
Indetermined Location	N/A	Sinai Anis Range	Sittai Anns, General(4)	None Documented	inune .	Ditt, residentia	Accessible	small arms debris	frequent receptors	throughout MRS 09.
Believed to be located		1 C		e i la companya di seconda di s	· ·		2	was observed	and no source	SS-10 and SS-09
tear Coaling Station)				•				during the SI.		collected.No evidence of small arms
							,			identified.
							Publiciy	No MEC, MD, or		· · · · · · · · · ·
WRS 10	547	Possible 1924 Anti-Aircraft Fire on hill 325	Unknown	None Documented	2006 SI GR	Residential, Commercial				 OR conducted
MRS 10 DEFENSIVE FIRING AREA #1 RAC 2	547	Possible 1924 Anti-Aircraft Fire on hill 325; FLEX #5 1939 Marine Defensive Area #1. May	Unknown	None Documented	2006 SI QR	Residential, Commercial, Industrial	Accessible	small arms debris was observed	Complete: frequent receptors and likely	QR conducted throughout MRS 10. SS-07 and SS-08

J-5

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

ł

MEC CONCEPTUAL SITE MODEL, CONTINUED

1

ł

:

CULEBRA ISLAND, PUERTO RICO

Subsite/Range	Acreage'	Suspect Past DoD Activities	Potential MEC/MD Presence	MEC/MD Found Since Closure	Previous Investigation/Clearan ce Actrons	Post-DoD Land Use and Current Land Use	Potential Receptors	Potential Source	Source Receptor Interaction	Field Sampling/ Qualitative Reconnaissance
<u>MRS 11</u> Defensive Firing Area #2 RAC 1	719	1922 155mm gun firing point for fire toward More Cay; Possible 1924 Anti-Aircraft Fire on hill 310; FLEX #4 Target at Firewood Bay beach barrage firing; FLEX #5 1939 Marine Defensive Area #2;	155mm, 5-inch anti⊦aircraft projectiles, 6-inch flat nose projectiles ⁽⁵⁾	Munifions reported in water near Project Area 11 (Project Area 12). 2006 SI QR identified 20mm Shell Casing	2006 SI QR	Residential, Commercial, Industrial, Frequent anchoring of boats.	Publicty Accessible	MD was observed during the SI. Extensive historical record of training indicates MEC and MD are possible in this area.	Complete: frequent receptors and likely source	QR conducted throughout MRS 11. SS-03, SS-04, SS-0 SS-06, and SS-27 collected. No MC identified.
	-	FLEX #7 1941 Training with 5-inch anti-aircraft projectiles and 6-inch flat nose projectiles at beach targets in Seine Bay and Firewood Bay.				- -				
MRS 12 Luis Pena Channel Water Areas RAC 1	835 (water)	FLEX #5 1939 Marine Defensive Area #2	Unknown	Munitions reported in the channel area. Many imbedded in coral.	None	Recreational Boating, Scuba Diving, Swimming.	Recreational users	MEC and MD confirmed in this area	Complete: receptors present and confirmed source	No QR or sampling was conducted in thi MRS.
MRS 13 Cayo Luis Pena Impact Area RAC 1	864	1924 Impact Area 155mm GPF and 75mm AA, machine gun tanks, 37mm, 8-inch and 6-inch naval guns, seaplanes; FLEX #5 1939 Aircraft Bombing and Machine	155mm GPF, 75mm AA, 37mm, 8-inch and 6-inch naval ⁽⁵⁾ Napalm ⁽⁶⁾	Ordnanca reported in water surrounding Cayo Luis Pena.	2006 SI QR	FWS - Wiklife Refuge Recreational boating	Publicty Accessible: accessed by boaters, hikers, and FWS	MD was observed during the SI. MEC or MD reported in water	Complete: receptors present and confirmed source	QR conducted throughout MRS 13. SS-02 and SS-02 collected.
	-	, Gun Range; , Helicopter Pad.	Napain				employees regularly.			
MRS 14 Airport and Camp Area RAC 3	416	Airport, Camp, Possible Small Arms Range	Unknown	None Documented	2006 SI QR	Airport Authority and private residential	Publiciy Accessible	No MEC, MD, or small arms debris was observed during the St.	Incomplete: frequent receptors and no source	QR conducted throughout MRS 14. SS-13 and ambient sample SS-16 collected.
AIRFIELD RIFLE RANGE	22	Small Arms Range	Small Arms, General ⁽⁴⁾	None Documented	2006 SI QR	Airport Authority	Publicly Accessible	No MEC, MD, or small arms debris was observed during the SI.	Incomplete: frequent receptors and no source	QR conducted throughout MRS 14. SS-13 and ambient sample SS-16 collected.
TOTAL	9460	a an				internet in the second se	9-2-0 - 144, <u>1-144, 144</u>			
	age for each inc	2 Individual substativinge. Total acreage, accounts for overlap o pen water.	1 = Private account - nonc 2 = COD response 3 ≈ 1995 ASR 4 = 2004 ASR supplement 5 ≈ 2005 Supplemental Ar 6 = Revised INPR 2005	t chives Search Raport (Final) Kelly Wolcott, Refuge Manager to ivar	1 Acosta, USACE.	DNR = Department of Natural Re DoD = Department of Defanse EE/CA = Engineering Evaluation. ECD = Explosives Ordnance Dag FWS = U.S. Fish and Wildlife Ser HE = High explosive	Cost Analysis Iosal	HEI = High explosive MEC = Munitions and ASR= Archives Searc SI = Site Inspection UXO = Unexploded O	explosives of concern h Report	u ¹

J-6

MC CONCEPTUAL SITE EXPOSURE MODEL

Site:	Culebra Island, PR MRS 02 Northwest Penins	ula, Cerro Balcon, Mortar Range, and Adjacent Cayos			
Comple Date Co	ted By: <u>Parsons</u> mpleted: <u>2-May-07</u> (1) Check the media that could be by the release.	directly affected For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Bidefy list other mechanisms or reference the report for details.	(3) Check exposure made identified in (2).	Check exposule pathways that are complete or need further evaluation.	(5) Identify the receptors potentially affected by each exposure pathway. Enter "C" for current receptors, "F" for future receptors, "C/F" for both current and future receptors. Current & Future Receptors
	Media	Transport Mechanisms	Exposure Media	Exposure Pathways	Contraction And Contraction And Contraction And And And And And And And And And And
	(2) Surtace Soil (0-2 inches)	Development in another and Development in another and Development in another and Development in a section and a section and Development in a section and a section and Development in a section and a sectio	2 soit	Indidentel Soil Ingestion Dennel Absorption of Contaminants from Sol	
	23 Subsurface Soil	Other (in):	groundwater ^{ial}	Ingestion of Groundwater Demnel Abeurption of Conteminants in Groundwate	
	C) Groundwater	Biosti relation for groute-basis Volabilization		Inhalation of Ouktoor Air Inhalation of Indicor Air Inhalation of Indicor Air Inhalation of Fugkive Dust	
	El Surface Water	Direct delates is of some sould Should so that infinit Volusizzation Check all Sodiorentration direct conditioner Uptake by plants or onlympia Other light Other light Other light		Ingestion of Surface Water Demai Absorption of Contaminants in Surface Wat	er C/F
	C Sediment	Direct naisees to and maint Resuspension, rusoff, or stockin Upplies by plants of entroise Other (fail)	S sediment.	Direct Contact with Sediment Ingestion of Wild Foods	

-

(a) This media was not evaluated for MC during the St; however; it is a secondary media contaminated only by transport of MC from a primary media. (b) The air pathway is addressed under the soil SLRA. Sail screening level include inhibition of fugifive dust,

ś

MC CONCEPTUAL SITE EXPOSURE MODEL

Site:	Culebra Isi MRS 03 Fi		iay Water Area		*****								
Complet Date Co	npleted: 2-1	nedia that c	ould be directly alfected	(2) Far asch medium identifi top arrow and check, pos mechanisms. Briefly tial	sible transport other mechanisms	Check exposure media identified in (2).	(4) Check exposite pathways that are complete or need function evaluation.	each cum °C/F	i exposul int recep * for both	(5) ceptors pol to pathway: tors, "F" for i current and i carrent and	Enter *C future re I future n	C" for Iceptors, receptors	or
	Med	Íla		or reference the report fo Transport Mechanism		Exposure Media	Exposure Pathways			.]	/
	D Surf So (0-2 in	face șii	Migrasis Migrasis Migrasis Migrasis Notation Reset Updates	ene to surface solf			Di Incidental Sol Ingestion Demsi Absorption of Canaminanta from Sol	Reversions					/
		i urface oll	Kenne and the second statement of the	l	sheet soll check groupdenter chack ar	🛛 groundwater)	Dennetion of Groundwater Dennet Absorption of Continuinents in Ground						
	Groun	Idwater	C Votalitie C Picer to C Picer to	eurlace water body	Anna Anna Anna Anna Anna Anna Anna Anna	D eir	Initialistion of Oukdoor Air Initialistion of Induor Air Initialistion of Induor Air Initialistion of Puglikee Dust	v alle soffwaren ge die de soffwaren ge die die soffwaren ge					
	Surface		Voteral Sodare Dates	entellion Dy plants dr anémalis	chief (2016) and chief (2016) and chief and chief and chief (2016)		C. Engestion of Surface Water Street Street	o Water Milling and A					
	C) Sedim		Direct reli	also to deallement ension, runoff, or ercsion by planth or ensimals		Image: sediment Image: sediment Image: sediment	Direct Contact with Sediment Ingestion of Wild Foods						

(a) The constant movement and exposure of the sand to ocean water greetly reduces the likelihood that MC remains in the soll/sediment at this MRS.

	(6) identify the receptors potentially effected by each opposer pathwey. Enter "C" for current receiptors, or "C.F" for both current and future receiptors.	Curront & Future	C d d g g g g g g g g g g g g g g g g g			CE CE CE CE CE CE	CIF CIF CIF CIF		Delivery Order 0008
	 Check exposure (4) Check exposure tell/ways that are compare or need further evolution. 		 Institutes Soli Ingestion Denne Assorption of Contentrates from Sol 	D Ingestion of Groundwater D Dermst Absorption of Contaminants in Countribusies	 Inhelicition of Outblock Ak Inhelicition of Indoor Ak Inhelicition of Fogelive Dust 	 Ingestion of Surface Water Dennel Absorption of Constituents in Surface Water 	2 Direct Context with Sectiment 2 hyperition of Wite Footh	from a phimary media.	007 14-D-0005
	Check of Saure media teerst of Saure media teerstifed in (2).	Ëxposure Madia	5	D groundwater ⁴⁴	10 1		a sediment	ed only by transport of MC f ve dust.	September 2007 Contract W912DY-04-D-0005
uver Araa		mechanisme. Briefly list obte or reference the report for de Transport Mechanisms	Development is unified self. Seven and seven self. Seven seven set Seven seve	Devel release is sub-reflues and the method and the development of the	Design second is a groundwater Design second is a groundwater Characteristic characteristic Characteristic characteristic	Openal insume is increased using Description increased using Description increased using Chromosome Chromosome Chromosome Chromosome Sectoremulsion Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome Chromosome	1288264	(a) This media was not evaluated for MC during the SI, however, it is a secondary media contartimized only by transport of MC from a primary media. (b) The air pathway is addressed under the coll SLRA. Soil screening level include inhistion of fugritie dust.	
80	Competed by: <u>Fersure</u> Date Completed: <u>2-May-07</u> Chreat his media that could be directly effected by the media	Andia	El Surfaces Saoil (0-2 inchus)	Subsurface Soli	Groundwater	Surface Water	Sadiment Sadiment	(a) This media was not evaluati (b) The air pathway is address	6 - T

MC CONCEPTUAL SITE EXPOSURE MODEL

ì

.

MC CONCEPTU	JAL {	SITE	EXPO	SURE	MODEL
-------------	-------	------	------	------	-------

	Culebra Island, PR MRS 05 Mortar and	d Combat Range Area	an organization and a second secon		
Completed Date Comp	(1)	could be directly affected. For each medium (dantified in (1), follow the top arrow and Check possible transport mechanisms. Briefly list other mechanisms	Check exposure media Identified in (2).	(4) Check exposure pathways that are complete or need further evaluation.	(5) Identify the receptors potentially affected by each exposure pathway. Enter "C" for current receptors, "F" for future receptors, or "C/F" for both current and future receptors.
	Media	Transport Mechanisms	Exposure Medja	Exposure Pathways	Current & Future Receptors
	izi Surface Söll (0-2 inches)	Image: state of the section of the	C soli	2 ingdental Sol Ingestion 2 Demai Absorption of Contaminants from Sol	CIF CIF CIF CIF
	171 Subsurface Soli	Direkt ensesse te sublisitiere sek Songralien to groundwaller Veletilization Veletilization Other (Vel);	El groundwata; ^{IN}	D Ingestion of Groundwater D Dermal Absorption of Contaminants in Ground	water
	C) Groundwater	Otherit missage is groundwater Otherit groundwater Volatilization check el/ Flow to surface water body sheat environment Flow to surface water body sheat environment Flow to surface water body sheat environment Uptabe by plants of animals sheat Animals Animals Other (ted): other	n sir ^{ta}	Inhelation of Outdoor Air Inhelation of Indoor Air Inhelation of Fagitive Dust	
	C) Surface Water			2 Ingestion of Surface Water Schutz (Draw Derma) Absorption of Contaminants in Surface	C/F C/F C/F C/F C/F Wetter C/F C/F C/F C/F
	C) Sediment	Offerson release to suddenent Offerson release to suddenent Offerson release to suddenent Offerson release Other (Bat):	I sediment	Direct Contact with Sedment Ingestion of Wild Foods	

(a) This media was not evaluated for MC during the SI; however, it is a secondary media contaminated only by transport of MC from a primary media. (b) The air pathway is addressed under the soil SLRA. Soil screening level include inhibitation of fugitive dust.

A second statement of the second statement of the second statement of the second statement of the second statem

.....

Site:	Culebra Island, PR MRS 06 Artillery Firl	ng Area			
Complete Date Com	1)	could be directly affected For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Briefly list other mechanisms or reference the report for details.	Check expersure media. identified in (2).	(4) Check exposite pathways that are- complete or need further evaluation.	(5) Identify the receptors potentially affected by each exposure pathway: Enter "C" for ourrent receptors, "F" for future receptors, or "C/F" for both currant and future receptors. Current & Future Receptors
	Media	Transport Mechanisms	Exposure Media	Exposure Pathways	
	(2) Surface Soli (0-2 in:chea)	Ditwit resource to subject cost check reif Migration of loadsing to subsurface check reif Migration of loadsing to subsurface check reif Migration of loadsing to subsurface check reif Migration of loadsing to groundwater check reif Velositization check reif Plusoff or ensoling check reif Uptake by plants or animalis check Reif Other (list) Fuscifier		Incidential Soli Ingestion Demail Absorption of Contaminants from Soli II	And the second s
	12) Subsurface Soli	Direct assamp to solvewhere yes Object above Volustization to groundwater Volustization Object (lat) Object (lat)	groundwater ⁽⁴⁾	Dennel Absorption of Crownewater	
	Groundwater		D air ^{lai}	Inhelation of Outdoor Air Inhelation of Indoor Air Inhelation of Rightive Dust	
	2) Surface Water	Check and a state state Check and state Check and state Check and state Check and Check a	D surface water ^{by}	Ingestion of Surface Water Demail Absorption of Contaminents in Surface 1	Antor CIF CIF CIF CIF CIF CIF CIF CIF CIF CIF
	2) Sediment	Crief (sky) Disset release to see invest Standard release to see invest Disset release to see invest Disset to see invest Disset to see invest Disset to see invest Disset to see invest	I sediment ^(b)	Direct Contact with Sediment Ingestion of Wild Foods	

(a) This media was not evaluated for MC during the St; however, it is a secondary media contaminated only by transport of MC from a primary media.
 (b) This media was not evaluated for MC during the St; however, it is a primary media that may have been contaminated by direct firs:
 (c) The air pethway is addressed under the soil SLRA. Soil screaning level include inhibition of fugifive dust.

Site:	Culebra Island, PR MRS 07 Culebrita	Artillery Impact Area			
On in which			******		
Complete					
Date Cor	(1)	(2) could be directly affected For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Briefly list other mechanisms	Check explaure media identified in (2).	(d) Check exposule pathways that are complete or need further evaluation.	(5) Identify the receptors potentially affected by each exposure pathway: Enter "C" for current receptors, "F" for future receptors, or "C/F" for both current and future receptors. Current & Future Receptors
	Madia	or reference the roport for details. Transport Mechanisms	Exposure Media	Exposure Pathways	translo
	[2 Surface Sail (0-2 inches)	Other (and): Examine Dast ⁽⁰⁾ Other (and): Examine and Other (and): Other (and): Examine and Other (and): Examine and Other (and): Examine and	5 seil	3 Incidental Soil Ingestion 7 Demail Absorption of Contaminants from Soil	Analysis of the contract of th
	2). Subsurface Soli	Street minnes is adjustface and Street grandwater Street grandwater Veisilization Check air Check air	12 groundwater ⁽⁴⁾	Dimension of Groundwater	
	C Groundwater	Direct aviante its groundwater Volatilization Flow to surface water body Other (surface) Other (surface)	C ah ^{loj}	Inhulation of Outdoor Ait under the inhulation of Outdoor Ait under the inhulation of Indoor Ait under the inhulation of Fugitive Dust information of Fugiti	
	🕢 Surface Water	Initial answer of working space Merch is starter Volusikkallori Check ast (2) Sedimentation Check ast (2) Uptable by plants or animate Check ast (3) Other (list) Check ast	() surface water	Ingestion of Surface Water Dermel Absorption of Contaminants in Surface Water	C/F C/F C/F C/F C/F C/F C/F C/F
	2 Sadiment	Orbect restause to esaligned 3 Resultpension, nurbill, or proving 1 Uptake by plants or animate 1 Uptake by plants or animate 1 Other (list).	a sediment	2 Direct Contact with Sediment Ingestion of Wild Foods	

(a) This media was not evaluated for MC during the SI; however, it is a secondary media contaminated only by transport of MC from a primary media. (b) The ait pathway is addressed under the soil SLRA. Soil screening level include inhitetion of fugitive dust.

1----

Site: Culebra Island MRS 08 Cayo	, PR Norte Impaci Area			
Completed By: <u>Parso</u> Date Completed: <u>2-May</u> (1) Check the medi by the release.		Check exposure media identified in (2),	Check exposure pathways that are complete or need further evaluation.	(5) Identify the receptors potentially effected by each exposure pathway. Enter "C" for current receptors, "F" for future receptors, or "C/F" for both current and future receptors. Current & Future Receptors
Media	or reference the report for details. Transport Mechaniams	Exposure Media	Expósure Pathways	
(2) Surface Soli (0-2 inche	Street relyate to surface and Theor sof Migration or leaching to subsurface Migration or leaching to groundwater Migration or leaching to groundwater Votel/space Runoff or emain Uptake by plants or animals Where first - Euglity Dust ¹⁺¹ Other filst): Euglity Dust ¹⁺¹	e soit	Incidental Sol Ingestion Demail Absorption of Contaminants from Sol	C/F C/F C/F C/F C/F
2 Subsurfa Sol	Billert rakuns to attensificat tell Billert generationet Billert generationet Billert generationet Check att Check att	2 groundwater ¹⁴	Ingestice of Groundwater Demail Absorption of Contaminants is Groundwater	
D Groundwi	ter Volasilizadon <u>check provincentes in the second /u>		Initiation of Outdoor Air Initiation of Indoor Air Initiation of Indoor Air Initiation of Euglive Dust	
Ci Surface Wa	🔲 Uptake by plants or animals	C surface under	Ingestion of Surface Water Demail Absorption of Conteminents in Surface W	C/F C/F C/F C/F C/F ater C/F C/F C/F C/F
C3 Sediment	Citter (Isi) Direct raisesse to asell nent Citter (Isi) Resupersion, sundif, or ension Uptake by plants or animate Citter (Isi) Citter (Isi)	 sediment biota ^(k) 	Ofrect Contact with Sediment Ingestion of Wild Foods	CIF CIF CIF CIF

(a). This media was not avaluated for MC during the SI; however, it is a secondary media contamineted only by transport of MC from a primary media, (b) The air pathway is addressed under the soil SLRA. Soil acreening level include inhitation of fugitive dust.

Site:	Culebra Island, PR MRS 09 Soldado Pol	nt Montar and Bombing Aress			
Comple Date Co	mpleted: 2-May-07				(5) Identify the receptors potentially affected by teach exposure pathway: Enter "C" for current receptors, if " for hubre receptors, or
	(1) Check the media that co by the release.	(2) Nuld be directly affected for each modium identified in (1), follow the top arrow and check possible transport mechanisms. Briefly list other mechanisms or reference the report for details.	Check exal sure mode identified in (2).	Check exposure pathways that are complete or need further evaluation.	*C/F* for bolk current and future receptors.
	Media	Transport Mochanisms	Exposure Media	Exposure Pathways	a contract a cont
	Soli (0-2 înches)	Migratien or kesching to statustiste Migratien or kesching to groundwatter Volkelikarking Check ser Volkelikarking Uptake by plants or entmals Other (ist): Fugitive Dust ⁽¹⁾		2 Incidential Sol Ingestion 2 Demai Absorption of Contaminantis from Sol	
	Ci Subsurface Soll	Dieset advest for some university Migration to groundwater Migration to groundwater Votatilization Other (tig) Other (tig)	groundwater ^(s)	Ingestion of Groundwater Demial Absorption of Contaminants in Groundwate	
	C Groundwater	Denet ressess to groundwater Orieck groundwater Orieck and groundwater Orieck and groundwater Flow to surface water body Flow to surface water body Flow to surface water body Other (safe) Other (safe)	🗆 esa ele ^(a)	Inhalation of Oukdoor Ait Inhalation of Indoor Ait Inhalation of Fugative Out	
	23 Surface Water	Volabilization Volabilization Sedariana and a latence which Volabilization Sedariana and Sedari	C approce water	Ingestion of Surface Water Demail Absorption of Contaminants in Surface Water	C/F C/F C/F C/F C/F ster C/F C/F C/F C/F C/F
	(2) Sediment	Direct release to assiment check assiment Image: State of the state of t	B sediment ^(b) B tricks ^(b)	Direct Contact with Sectionary Direct Contact with Sectionary Jingestion of Wild Foods	

(a) This media was not evaluated for MC during the SI; however, it is a secondary media contaminated only by transport of MC from a primary media.
 (b) This media was not evaluated for MC during the SI; however, it is a primary media that may have been contaminated by direct fire.
 (c) The air pathway is addressed under the coll SLRA. Soil screening level include inhitetion of fugitive dust.

.....

**	Culebra is MRS 10 D	Augusta and Augusta and Augusta	Firing Area #1					
Completed Date Comp		ársons May-07						
,	(1)) media that c	could be directly affected	(2) For each medium identified in (top arrow and check possible tr mechanisms. Brieffy list other or referance the report for detail	ensport nechanisms	Check exposure media identified in (2).	Check exposure palliways that are complete or need further evaluation.	(5) Identify the receptors potentially affected by each exposure pullway: Enter "C" for current receptors, "F" for future receptors, or "C/F" for both current and future receptors.
	Mec	dia		Transport Mechanisms		Exposure Media	Exposure Pathways	Children) Children) Children) Children) Children) Children
	\$	i face oil nches}	2 Migrat 2 Migrat 2 Valasii 2 Ruset 2 Uptake	eses la tarifaci jud on ar lesching to aubrurtase on or lesching to groundwater catilon or encelon by plants or attimule listly. Fundive Dust ⁶⁹	direk stå dinad sof Officia gripanium Check gripanium Check af Officia sono Officia sono	Billos B	2 Englacement Soli Indection 2 Dermal Absorption of Contaminants from Sol	Construction of the second sec
		1 iurface ioil		£	check groundwith Check groundwith Check au	2 groundwater ^(H)	Ingestion of Groundwater Demosi Absorption of Contaminants in Groundwater	
	Grow) ndwater	C Yoka C Flowa	sertiace water body	check grandbaster Scheck der Anters soffen leiter Check sadlant Anter Ander	D eir ^{ta}	Inhaistion of Outdoor Air Inhaistion of Indoor Air Inhaistion of Indoor Air Inhaistion of Fugitive Dust	
	C) Surface) e Water	C Voluel C Social	entaliser (abert sectors and abert of check sectors abert aber	Distillers water."	Ingestion of Surface Water Demail Absorption of Contaminants in Surface V	Valer C/F
	C Sədi) int#nt	Diensis vel	issa to serdiment ension, runoff, or erceson by plants or animals	chiefe i settoren Statistississi Statistississi Statistississi	Image: Section of the section of t	Direct Contact with Sediment Ingention of Wild Foods	C/F

(a) This media was not evaluated for MC during the SI; however, it is a secondary media contaminated only by transport of MC from a primary media. (b) The air pathway is addressed under the soil SLRA. Soil screaning level include inhitation of fugitive dust.

Site:	Culebra Island, PR MRS 11 Defensive				
Complete Date Con	(1)	could be directly affected. For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Briefly list other mechanisms or reference the resurt for details.	Check exposure media identified in (2).	Check exposite pathways that are complete or need further evaluation.	(5) identify the receptors potentially affected by each exposure pathway: Enter "C" for current receptors, "F" for future receptors, or "C/F" for both current and future receptors. Current & Future Receptors
	Media	Transport Mechanisms	Exposure Media	Exposure Pathways	
	(2) Surface Soil (0-2:Inches)		El soll	Incidential Soil Ingestion Demail Absorption of Contaminants from Soil III	In the second se
	i2) Subsurfaco Soil	Direct indexes to submuch as sell Migration to groundwater Votablication Votablication Other (BA):	@ groundwater ⁽⁴⁾	D Ingetilion of Groundweller D Demail Absorption of Contemingents in Groundwe	
	C) Groundwater	Other in sector se	C air ^{ia}	Inhelistion of Outdoor Air Inhelistion of Fugilive Dust Inhelistion of Fugilive Dust	
	C Surface Water	Desired Houses is surface split. Volatikznikon Sedirmenlation Uptako by plants or animals Others (Sel)	B surface water*	Ingestion of Surface Water Demail Absorption of Contaminants in Surface 4	C/F C/F C/F C/F C/F C/F C/F C/F C/F C/F
	L) Sodiment	Official interest to available of the second s	© sediment ⁽⁴⁾	Otrect Contact with Sediment Ingestion of Wild Foods	

(a) This media was not evaluated for MC during the SI; however, if its a secondary media contaminated only by transport of MC from a primary media. (b) The air pathway is addressed under the soil SLRA. Soil screening level include inhitation of fugitive dust.

	Culebra Island, PR MRS 12 Luis Pena	Channel Water Area	99999999999999999999999999999999999999		
Completed Date Com	pleted: <u>2-May-07</u>	could be directly affected For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Briefly list other mechanisms	Check addsure media identified in (2).	(4) Check exposite pathways that une complete or need further evaluation.	(5) Identify the receptors potentially affected by each exposure pathway: Enter "C" for current receptors, "F" for future receptors. "C/F" for both current and future receptors. Current & Future Receptors
	Media	or reference the report for details. Transport Mechanisms	Exposure Media	Exposure Pathways	
	C) Surfece Sail (0-2 inches)	Othert solvers to starting and Othert solvers Migration or leaching to subsurface Ithera and Migration or leaching to subsurface Ithera and Migration or leaching to subsurface Ithera and Volationation Ithera and Provent or seaching Ithera and Ithera by plants or animals Ithera data Other field: Fuging the Usit	• soil	Inodential Soli Ingestion Demail Absorption of Contaminants from Soli	Residents Residents Residents Residents Recommendation Recommendat
	C Subsurface Soli	Diver relation to groundwater Violatization Other (ist): Other (ist):	C groundwater	Ingestion of Groundwater Dermal Absorption of Conteminants in Ground	
	CI Groundwater	Direct missues to gre influenter Direct missues to gre influenter Valstätzetion check sit Flow is sufface water body seast audies jumps Flow is sufface water body desct audies jumps Flow is sufface water body desct audies jumps Uptake by plants or animals desct audies Other (at). desct audies	D air	Inhalation of Outdoor Air Inhalation of Indoor Air Inhalation of Indoor Air Inhalation of Fugitive Dust	
	D Surface Water	Direct of linear of surplus Check of linear of surplus Votatilization Check of linear of line		Ingestion of Surface Water Dermal Absorption of Contaminants in Surface	9 Water
	El Sediment(a)	Direct retenses to sertiment Orient retenses to sertiment Orient retenses to sertiment Orient retenses Orient retenses Orient retenses Orient retenses	C sediment	Direct Contact with Sadiment Ingestion of Wild Foods	

(a) The constant movement and exposure of the sand to ocean water greatly reduces the likelihood that MC remains in the solf/sediment at this MRS.

	Cutebra Island, PR MRS 13 Cayo Luis F	'ena Impact Area			
Completer Date Com	1 By: <u>Parsons</u> pleted: <u>2-May-07</u>				(5) Identify the receptors polantially affected by
	(1) Check the mode that c by the release.	ould be directly affected For each medium identified in (1), follow the top arrow and check posable transport mechanisms. Briefly list other mechanisms	Check explaure media Identified in (2)	(4) Check exposite pathways that are complete or need further evaluation,	each exposure pathway: Enter "C" for current receptors, "F" for future receptors, or "C/F" for both current and future receptors. Current & Future Receptors
	Media	or reference the report for datails. Transport Mechanisms	Exposure Media	Exposure Pathways	
	El Surface Soll (8-2 Inches)	Other Standard Instantian and Other Othe	D soll	Demail Abangion of Conteminants from Sol	The second secon
	El Subsurfece Soll	Direct and a subscattere sub- Direct and a subscattere	groundwater ⁱⁿ	Dimetion of Groundwater Diamet Absorption of Conteminants in Broundwate	
	C: Groundwater	Direct research in grounderstar skreet grounderstar Volatilization check al: Flore to scription water body where agroup many second a	🗆 air ^{ia}	Inhalation of Outdoor Air Inhalation of Indoor Air Inhalation of Indoor Air Inhalation of Fugitive Dost	
	C) Surface Water	Other restant to full tax seleve Rev 2 Andrew Rever Absolt as	2 surface water*	Demail Absorption of Contaminants in Surface Water	C/F C/F
	C Sediment		I sediment ^(a)	Direct Contact with Sediment Ingestion of Wild Foods	

(a) This media was not evaluated for MC during the SI; however, it is a secondary media contaminated only by transport of MC from a primary media. (b) The sir pathway is addressed under the soil SLRA. Soil screening level include inhilation of fuglitve dust.

e -

	Culebra Island, PR MRS 14 Airport and				
Completer Date Com	pleted: <u>2-May-07</u>	could be directly affected For each medium identified in (1), follow the top arrow and check possible transport mechanisms or reference the report for details,	Check exposure modia identified in (2).	Check exposure pathways that are- complete or need further evaluation.	(5) Identify the receptors potentially effected by each exposure pathway. Enter "C" for current receptors, "F" for future receptors, or "C#" for both current and future receptors. Current & Future Receptors
	Media	Transport Mechanisms	Exposure Media	Exposure Pathways	children) children) mortean R. co bh mortean Con mortean
	E Suiface Soil (0-2 inches)	Breed tableter te sustaine fel Migration or baching to substriktor Migration or baching to grownbeater Velationation Runoff or artistation Uptake by plants or animate Other (list): Eugline Dual ^{the} Other (list): Eugline Dual ^{the}		2 Insidental Sol Ingetilion 2 Demis Absorption of Contaminants from Sol	CIF CIF CIF CIF
	2 Subsurface Sait		3 groundwater ^{tel}	Ingestion of Groundwater Bermei Absorption of Contaminante in Groundwate	Second A 19 Milling and a second
	Ü Groundwater	Offerst releases to groundwater chack proceedents Volatilitation	C alt ^(a)	Inhelation of Outdoor Air Inhelation of Indoor Air Inhelation of Fughtive Dust	
	D Surface Wator	Colour retains to the former line Volasization Sectorentation Volasization Check au Other tiels Other tiels Other tiels	Castring sets	Demai Absorption of Contaminants in Sulface Wa	
	C] Settiment	Direct selecate to selection t Recuspontion, runoff, or erosion Uptake by plants or snimels Other (list):	(3) sediment ⁽⁴⁾	Direct Contact with Sediment Direct Contact with Sediment Ingestion of Wild Foods	

(a) This media was not evaluated for MC during the SI; however, it is a secondary media contaminated only by transport of MC from a primary media. (b) The air pathway is addressed under the coll SLRA. Soil acreaning level include inhitiation of fugitive dust.

i

APPENDIX K MRSPP EVALUATION

.

This page intentionally left blank.

Delivery Order 0008

MRSPP Evaluation

MRS 02

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

This page intentionally left blank.

K - 4

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

1

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS-02 Northwest Peninsula, Cerro Balcon, and Adjacent Cayos

Component: US Navy and US Marines

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 2 Northwest Peninsula, Cerro Balcon, and Adjacent Cayos (I02PR006802)

Date Information Entered/Updated: January 2007/April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

D PA	~	⁄SI	u Ri	G FS	RD
🛛 RA-C	; c	RIP	🗆 RA-0		OLTM .

Media Evaluated (check all that apply):

Groundwater	Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 02, consisting of approximately 660 acres, is comprised of the Northwest Peninsula, Cerro Balcon, Mortar Range and Adjacent Cayos. The Navy conducted Fleet Maneuvers and Fleet Landing Exercises (FLEX) on MRS 02 between 1923 and 1941. During these exercises Northwest Peninsula and the surrounding cays were heavily bombarded with High Explosive (HE) bombs, projectiles, and rockets, as well as illumination and practice rounds.

Description of Pathways for Human and Ecological Receptors:

Surface Soil was investigated. Pathways are complete as access to the surface soil is unrestricted, although natural barriers are present.

Description of Receptors (Human and Ecological):

MRS 02 includes a USFWS refuge which contains nesting areas for protected seabirds and sensitive habitats. Private homes, hotels, a campground and public beaches are also present.

all munitions	classifications of munitions and their descriptions. Circle the score(s) that correspon types known or suspected to be present at the MRS. <i>unitions, small arms, physical evidence,</i> and <i>historical evidence</i> are defined in Append	
Classification	Description	Score
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Detenorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20
High explosive (unused)	All DMM containing a high explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability.	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a not control agent filler (e.g., tear gas).	3
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 30).	30

Munitions include HE bombs, various mortars rockets, illumination rounds, and artillery. Mortars and 75 mm artillery are rated sensitive because some models contain white phosphorus fillers. (Sections 2.4.1.1 and 4.2, and Appendix J of the 2007 SI.)

MRS 02 - Page - 2

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

١

.

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	 The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility. 	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	•4
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.]. 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 10).	10

MRS 02 - Page - 3

1

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS. Note: The terms *surface*, *subsurface*, *physical evidence*, and *historical evidence* are defined in Appendix C of the

Classification Description Score Physical evidence indicates that there are UXO or DMM on the surface of the MRS 25 **Confirmed surface** Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS. ٠ Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 20 Confirmed subsurface, active Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. ٠ Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 15 Confirmed subsurface, stable Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. ٠ There is physical evidence (e.g., munitions debris, such fragments, penetrators, Suspected (physical 10 projectiles, shell casings, links, fins), other than the documented presence of UXO or evidence) DMM, indicating that UXO or DMM may be present at the MRS. Suspected (historical ٠ There is historical evidence indicating that UXO or DMM may be present at the MRS. 5 evidence) There is physical or historical evidence indicating that UXO or DMM may be present in Subsurface, physical the subsurface, but there is a physical constraint (e.g., pavement, water depth over 2 constraint 120 feet) preventing direct access to the UXO or DMM. The presence of small arms ammunition is confirmed or suspected, regardless of other Small arms (regardless of factors such as geological stability [There must be evidence that no other types of 1 munitions (e.g., grenades) were used or are present at the MRS to place an MRS into location) this category.]. Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are Evidence of no munitions 0 present. DIRECTIONS: Record the single highest score from above in the box LOCATION OF MUNITIONS 25 to the right (maximum score = 25). **建**御

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Section 4.2.1 and Tables 4.2 and 4.3 of the 2007 SI.

MRS 02 - Page - 4

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

2

Primer.

Table 4	
EHE Module: Ease of Access Data Element Table	
 DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their description barrier type is directly related to the ease of public access to any explosive materiel. Circle corresponds with the ease of access to the MRS. Note: The term barrier is defined in Appendix C of the Primer. 	
Classification	Score
 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	10
Barrier to MRS access is incomplete • There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
 There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	5
 There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	
EASE OF ACCESS	8
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Ease of Access</i> classification in the provided. Section 4.2 of the 2007 SI notes steep cliffs that impeded access to parts of the MRS.	ie space

MRS 02 - Page - 5

September 2007 Contract W912DY-04-D-0005

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. 	5
Scheduled for transfer from DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.	3
DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

Section 2.3 of the 2007 SI notes that all of the land acquired by the military on Culebra and the surrounding cays and cayos was excessed to the Department of the Interior or transferred to the government of Puerto Rico. The lands are currently managed by USFWS, Puerto Rico Dept. of Natural Resources or the Municipality of Culebra.

MRS 02 - Page - 6

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

Note: If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

		<u> 안</u>
	Description	Score
> 500 persons per square mile	 There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. 	5
100–500 persons per square mile	There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	3
< 100 persons per square mile	 There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. 	1
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the Population Density classification in the	ne space
Section 2.2.7 of the 2007 SI not	es that the population density of the municipality of Culebra is 71.8 persons per	[,] mile, as

obtained from Census 2000.

MRS 02 - Page - 7

Delivery Order 0008

r

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	 There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	5
16 to 25 inhabited structures	• There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	· 1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5)	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

MRS 2 is located within a two-mile radius surrounding the Municipality of Culebra which has just fewer than 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

	Table 8		
	Types of Activities/Structures Data Element Table		
descriptions. Review	cations of activities and/or inhabited structures near the hazard and thei the types of activities that occur and/or structures that are present within the score(s) that correspond with <u>all</u> the activities/structure classification	n two miles	
Note: The term inhabited structure is	defined in Appendix C of the Primer.		
Classification	Description	Score	
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5	
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4	
Agricultural, forestry	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. 	. 3	
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2 [°] .	
No known or recurring activities	• There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1	
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5	
 DIRECTIONS: Document any MRS-specific data used in selecting the <i>Types of Activities/Structures</i> classifications in the space provided. MRS 2 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8) 			

.

-en: : : : : : .

EHE Module	Table 9 : Ecological and/or Cultural Resources Data Element Table	
DIRECTIONS: Below are four types of resour resource class	classifications of ecological and/or cultural resources and their descriptions. Retricts present and circle the score that corresponds with the ecological and/or cultifications at the MRS. Sources and cultural resources are defined in Appendix C of the Primer.	
	Description	Score
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	. 3
No ecological or cultural resources present	 There are no ecological resources or cultural resources present on the MRS. 	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	3

MRS 2 is a FWS wildlife refuge, protected area for seabirds. No cultural resources are documented on MRS 02 per the 2007 SI (Section 2.2.6) and the 2006 SSWP.

.

MRS 02 - Page • 10

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

Table 10 Determining the EHE Module Rating

DIRECTIONS:

- From Tables 1–9, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- 3. Add the three **Value** boxes and record this number in the **EHE Module Total** box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the EHE Module Rating that corresponds to the range selected and record this value in the EHE Module Rating box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

g the LHE module Rating				
	Source	Score	Value	
Explosive Hazard Factor Data Elements				
Munitions Type	Table 1	30	40	
Source of Hazard	Table 2	10	то	
Accessibility Factor Data Elemer	nts		_	
Location of Munitions	Table 3	25		
Ease of Access	Table 4	8	38	
Status of Property	Table 5	5		
Receptor Factor Data Elements				
Population Density	Table 6	1		
Population Near Hazard	Table 7	5	14	
Types of Activities/ Structures	Table 8	5	14	
Ecological and /or Cultural Resources	Table 9	3		
EHE	MODUL	E TOTAL	92	
EHE Module Total	EHE	Module R	ating	
92 to 100		A		
82 to 91		B		
71 to 81	С			
60 to 70	D			
48 to 59 38 to 47	E F			
less than 38	G F			
	Eva	luation Pen	ding	
Alternative Module Ratings	No Longer Required			
Anomalive module natings	No Known or Suspected Explosive Hazard			
EHE MODULE RATING		A		

MRS 02 - Page - 11

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS.
 Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, explosive configuration either UXO or damaged DMM	 The CWM known or suspected of being present at the MRS is: Explosively configured CWM that are UXO (i.e., CWM/UXO). Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS is: Nonexplosively configured CWM/DMM. Bulk CWM/DMM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942- toxic gas set M-2/E11. 	12
CAIS (chemical agent identification sets)	 Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the *CWM Configuration* classifications in the space provided.

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI Report). Tables 12-19 have been omitted.

MRS 02 - Page - 12

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

K - 16

Table 20 Determining the CHE Module Rating

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- 3. Add the three **Value** boxes and record this number in the **CHE Module Total** box below.
- 4. Circle the appropriate range for the CHE Module Total below.
- 5. Circle the CHE Module Rating that corresponds to the range selected and record this value in the CHE Module Rating box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value	
CWM Hazard Factor Data Elements				
CWM Configuration	Table 11	0	0	
Sources of CWM	Table 12	0	0	
Accessibility Factor Data Elemer	nts			
Location of CWM	Table 13	0		
Ease of Access	Table 14	0	0	
Status of Property	Table 15	0		
Receptor Factor Data Elements				
Population Density	Table 16	0		
Population Near Hazard	Table 17	0	0	
Types of Activities/ Structures	Table 18	0	0	
Ecological and /or Cultural Resources	Table 19	0		
СНЕ	MODULI	E TOTAL	0	
CHE Module Total	CHE Module Rating		lating	
92 to 100	Α			
82 to 91	В			
71 to 81	<u> </u>			
60 to 70 48 to 59	<u> </u>			
<u>46 t0 59</u> 38 to 47	E F			
less than 38	G F			
Evaluation Pend		ding		
Alternative Module Ratings		Longer Requ		
	No Known or Suspected CWM Hazard			
CHE MODULE RATING	No Known or Suspected CWM Hazard			

MRS 02 - Page - 13

compa Table 2 concer togethe Scale t the grou	rison values (from Appendix B) in the tai 7. Calculate and record the ratios for ea itration by the comparison value. Dete r, including additional contaminants record o determine and record the CHF Value. undwater, select the box at the bottom of	r Data Element Table Factor (CHF) Maminants in the MRS's groundwater and the ble below. Additional contaminants can be r the contaminant by dividing the maximum rmine the CHF by adding the ratios for each rded on Table 27. Based on the CHF, use the lf there is no known or suspected MC hazard the table.	recorded on n medium ne CHF			
Contaminant	rather than total, metals analyses when b Maximum Concentration (μg/L)	Comparison Value (µg/L)	Ratios			
Contaminant	Maximum Concentration (µg/L)	Comparison value (µg/L)	Ratios			
CHF > 100 100 > CHF > 2	H (High)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Maximum Concentration of C]}$	contaminant]			
2 > CHF > 2	L (Low)					
CONTAMINANT HAZARD FACTOR DIRECTIONS: Record the CHF Value (maximum value = H). from above in the box to the right						
DIRECTIONS: Circle th Classification		ay Factor the groundwater migratory pathway at the N cription	1RS. Value			
Evident	moving toward, or has moved to a point of exposi-		Н			
Potential		ightly beyond the source (i.e., tens of feet), could in is not sufficient to make a determination of Evident	м			
Confined	Information indicates a low potential for contamin a potential point of exposure (possibly due to geo	ant migration from the source via the groundwater to logical structures or physical controls).	L			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	nest value from above in the box to the H).				
DIRECTIONS: Circle th Classification		the groundwater receptors at the MRS. cription	Value			
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture H (equivalent to Class I or IIA aquifer).					
Potential		adient of the source and the groundwater is currently or agriculture (equivalent to Class I, IIA, or IIB	М			
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater					
RECEPTOR FACTOR	DIRECTIONS: Record the single higt right (maximum value =	nest value from above in the box to the H).				
		wn or Suspected Groundwater MC Hazard				

Per TPP concurrence, no groundwater samples were collected as part of the SI.

MRS 02 - Page - 14

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

.

HHE Module: Surface Water – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Contaminant Maximum Concentration (µg/L) Comparison Value (µg/L)					
			······			
CHF Scale	CHF Value	Sum The Ratios				
CHF > 100	H (High)					
100 > CHF > 2	M (Medium)	$CHF = \sum \underline{[Maximum Concentration of Concentration]}$	ontaminantj			
2 > CHF	L (Low)	[Comparison Value for Conta	minant]			
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right				
HAZARD FACTOR	(maximum value = H).		·			
	Migratory Pathw					
DIRECTIONS: Circle tr Classification		the surface water migratory pathway at the	MRS. Value			
	Analytical data or observable evidence indicates that contamination in the surface water is present at,					
Evident	moving toward, or has moved to a point of exposure.					
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.					
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).					
MIGRATORY	DIRECTIONS: Record the single high					
PATHWAY FACTOR	right (maximum value =					
	Receptor F	actor the surface water receptors at the MRS.				
Classification		cription	Value			
······································		to which contamination has moved or can move.				
Identified			н			
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	М			
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.					
RECEPTOR	DIRECTIONS: Record the single high	est value from above in the box to				
FACTOR	the right (maximum valu					
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard				

Per TPP concurrence, no surface water samples were collected as part of the SI

MRS 02 - Page - 15

4

ĩ

7

	Table E Module: Sediment – Human						
DIRECTIONS: Record values Calcula compa addition record	<u>Contaminant Hazard</u> the maximum concentrations of all con (from Appendix B) in the table below. A ate and record the ratios for each contaminison value. Determine the CHF by add nal contaminants recorded on Table 27.	1 Factor (CHF) Intaminants in the site's sediment and their co dditional contaminants can be recorded on Ta hinant by dividing the maximum concentrati ling the ratios for each medium together, incl Based on the CHF , use the CHF Scale to de suspected MC hazard for human endpoints pr	able 27. on by the uding termine and				
Contaminant Maximum Concentration (mg/kg) Comparison Value (mg/kg) Ra							
CHF Scale	CHF Value	Sum The Ratios					
CHF > 100	H (High)	🔽 [Maximum Concentration of Co	ntaminant]				
100 > CHF > 2	Image: Maximum Concentration of Contaminant] M (Medium) CHF = [Maximum Concentration of Contaminant] L (Low) [Comparison Value for Contaminant]						
2 > CHF	L (Low)						
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right					
	Migratory Pathw ne value that corresponds most closely to	<u>vay Factor</u> the sediment migratory pathway at the MRS	•				
Classification		cription	Value				
Evident	moving toward, or has moved to a point of expos		H				
Potential		tly beyond the source (i.e., tens of feet), could move ot sufficient to make a determination of Evident or	М				
Confined		nant migration from the source via the sediment to a ence of geological structures or physical controls).	L				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value =	h <u>est value</u> from above in the box to the = H).					
	Receptor F						
DIRECTIONS: Circle th Classification	ne value that corresponds most closely to Des	the sediment receptors at the MRS. cription	Value				
Identified	Identified receptors have access to sediment to v	which contamination has moved or can move.	Н				
Potential	Potential for receptors to have access to sedime	nt to which contamination has moved or can move.	М				
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L				
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single hig</u> the right (maximum val						
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard					

Per TPP concurrence, no sediment samples were collected at this site as part of the SI

MRS 02 - Page - 16 September 2007 Contract W912DY-04-D-0005

- ------

	Table	24	
DIRECTIONS: Record compa Table 2 concer togethe Scale t ecologi	<u>Contaminant Hazard</u> the maximum concentrations of all co rison values (from Appendix B) in the ta 7. Calculate and record the ratios for en tration by the comparison value. Dete r, including additional contaminants record o determine and record the CHF Value.	ntaminants in the MRS's surface water and the able below. Additional contaminants can be reach contaminant by dividing the maximum ermine the CHF by adding the ratios for each orded on Table 27. Based on the CHF , use the lf there is no known or suspected MC hazarder, select the box at the bottom of the table.	ecorded on n medium ne CHF
Contaminant	Maximum Concentration (μ g/L)	Comparison Value (μg/L)	Ratios
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	1	
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Concentration]$	ontaminant]
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	e from above in the box to the right	_
DIRECTIONS: Circle the Classification	•	vay Factor b the surface water migratory pathway at the scription	MRS. Value
Evident		that contamination in the surface water is present at,	Н
Potential	Contamination in surface water has moved only	slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident	М
Confined	Information indicates a low potential for contamination a potential point of exposure (possibly due to controls).	nant migration from the source via the surface water presence of geological structures or physical	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value	hest value from above in the box to the = H).	
DIRECTIONS: Circle th Classification	· · · · ·	actor o the surface water receptors at the MRS. scription	Value
Identified	and a second	ar to which contamination has moved or can move.	H
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	M
Limited		s to surface water to which contamination has moved	L
RECEPTOR FACTOR		hest value from above in the box to the = H).	
	No Known or Suspected Surfa	ce Water (Ecological Endpoint) MC Hazard	

Per TPP concurrence, no surface water samples were collected as part of the SI

.

1

5 .

.

1 . .

F

Table 25 HHE Module: Sediment – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the sediment, select the box at the bottom of the table.							
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios				
			111100				
······································							
CHF Scale	CHF Value	Sum the Ratios					
CHF > 100	H (High)	- Maximum Concentration of Co	ontaminanti				
100 > CHF > 2	M (Medium)	$\frac{H (High)}{M (Medium)} \qquad CHF = \sum_{i=1}^{i} \frac{[Maximum Concentration of Contaminant]}{[Maximum Concentration of Contaminant]}$					
2 > CHF		L (Low) [Comparison Value for Contaminant]					
CONTAMINANT HAZARD FACTOR							
DIRECTIONS: Circle th	Migratory Path ne value that corresponds most closely t	way Factor o the sediment migratory pathway at the MRS	5.				
Classification	De	scription	Value				
Evident	Analytical data or observable evidence indicate moving toward, or has moved to a point of expo	s that contamination in the sediment is present at, sure.	Н				
Potential		htly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or	М				
Confined		inant migration from the source via the sediment to a sence of geological structures or physical controls).	L				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value	thest value from above in the box to the = H).					
DIRECTIONS: Circle the Classification	Receptor I ne value that corresponds most closely t De:		Value				
Identified	Identified receptors have access to sediment to	which contamination has moved or can move.	Н				
Potential	Potential for receptors to have access to sedime	ent to which contamination has moved or can move.	М				
Limited	Little or no potential for receptors to have acces can move.	s to sediment to which contamination has moved or	L				
RECEPTOR FACTOR	DIRECTIONS: Record the single hic right (maximum value	hest value from above in the box to the = H).					
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard					

Per TPP concurrence, no sediment samples were collected at this site as part of the SI

MRS 02 - Page - 18

_

.

HHE Module: Surface Soil Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio
Aluminum	32000	77000	0.42
Iron	83000	23000	3.6
Strontium	50	46000	0.0010
Zinc	150	23000	0.0065
CHF Scale	CHF Value	Sum the Ratios	4.02
CHF > 100	H (High)	aug T [Maximum Concentration of Co	ntaminant]
100 > CHF > 2	M (Medium)	$CHF = \sum IMaximum Concentration of Co$	minantl
2 > CHF	L (Low)		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Va (maximum value = H	l <u>ue</u> from above in the box to the right 1).	м
DIRECTIONS: Circle the Classification		iway Factor to the surface soil migratory pathway at the Mi escription	RS. Value
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.		
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined		minant migration from the source via the surface soil to presence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		L
DIRECTIONS: Circle the Classification		Factor to the surface soil receptors at the MRS. escription	Value
Identified	Identified receptors have access to surface se	bil to which contamination has moved or can move.	н
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.		
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.		
RECEPTOR FACTOR	DIRECTIONS: Record the single h right (maximum valu	lighest value from above in the box to the lie = H).	L
	No K	known or Suspected Surface Soil MC Hazard	t

Soil samples are from Cayo Lobo and Cerro Balcon collected by Ellis Environmental. (SI Report Section 4.2.2.5). Ambient soil samples collected are used to for metals comparison per TPP concurrence. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score.

Pathway and receptor values are rated low given that iron may be attributable to volcanic rocks on the site. 2007 SI 5.1.3.2).

MRS 02 - Page - 19

		Table 27		
		lemental Contaminant Ha	ard Factor Table	
DIRECTIONS		ntaminant Hazard Factor (CHF) are more than five contaminants	s present at the MRS. This	e al
SUI	plemental table designed	to hold information about containi hese contaminants are present. T	nants that do not fit in the pro	evious tables.
ma	ximum concentrations a	nd their comparison values from	n Appendix B) in the table be	low.
cto (moarison value Determ	e ter each contaminant by siviling he the CHF for each medium on t	ne appropriate média-specifi	c tables.
	noi lioradd raties from diffe			
Mecha	Contaminant Several Seve	Maximum Concentration	Comparison Value	Ratio
- 	· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·		
	······			

MRS 02 - Page - 20

.

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)					
Surface Water/Human Endpoint (Table 22)	-	-	-	-	-
Sediment/Human Endpoint (Table 23)	-	-	-	-	-
Surface Water/Ecological Endpoint (Table 24)	-	-	-	-	-
Sediment/Ecological Endpoint (Table 25)	-	-	-	 -	- ·
Surface Soil (Table 26)	М	L	L	MLL	F

DIRECTIONS (cont.):

 Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE MODULE RATING

HHE Ratings (for reference only)

Combination	Rating	
HHH	A	
ННМ	В	
HHL		
HMM	C	
HML		
MMM	D	
HLL	_	
MML	E	
MLL	F	
	G	
	Evaluation Pending	
Alternative Module Ratings	No Longer Required	
J	No Known or Suspected MC Hazard	

MRS 02 - Page - 21

F

Table 29 MRS Priority

DIRECTIONS: In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		A	1		
A	2	В	2	A	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending		Evaluation	Pending	Evaluation Pending	
No Longer F	Required	No Longer Required		No Longer Required	
No Known or Suspected Explosive Hazard		No Known or Su Haza		No Known or Suspected MC Haz	
MRS or ALTERNATIVE PRIORITY			2)	

MRSPP Evaluation

MRS 03

.

.

.

.

.

This page intentionally left blank.

,

Table A MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS 03- Flamenco Bay Water Area

Component: US Navy and US Marines

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 3 Flamenco Bay Water Area (I02PR006803)

Date Information Entered/Updated: January 2007/September 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

🗆 PA	✓SI		CI FS	
RA-C		RA-O		

Media Evaluated (check all that apply):

□Groundwater	Sediment (human receptor)
Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 03, consists of approximately 195 acres of shallow water in Flamenco Bay extending midway up the east side of Northwest Peninsula to midway up the west side of Flamenco Point. This area was used by the military for amphibious training and ordnance was fired in the bay. Records show that Fleet Maneuvers and Fleet Landing Exercises (FLEX) were conducted in the area in 1939 and involved firing of 75mm shrapnel projectiles at the mouth of the bay.

Description of Pathways for Human and Ecological Receptors:

MRS 03 is an underwater MRS that is hydrologically connected to the Atlantic Ocean. The mouth of the Bay is wide and there are no tidal restrictions. The ocean would dilute MC.

Description of Receptors (Human and Ecological):

MRS 03 is a shallow bay with heavy use for recreational swimming, snorkeling and diving.

MRS 03 - Page-1

September 2007 Contract W912DY-04-D-0005

Table 1 **EHE Module: Munitions Type Data Element Table** DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with all munitions types known or suspected to be present at the MRS. Note: The terms practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer. Classification Description Score All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice 30 Sensitive munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered sensitive High explosive (used or 25 All DMM containing a high-explosive filler that have: damaged) Been damaged by burning or detonation . Deteriorated to the point of instability. All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). Pyrotechnic (used or All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, 20 smoke grenades) that have: damaged) Been damaged by burning or detonation Detenorated to the point of instability. All DMM containing a high explosive filler that: 15 High explosive (unused) Have not been damaged by burning or detonation Are not deteriorated to the point of instability. All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., 15 Propellant a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., Bulk secondary high a rocket motor), that are deteriorated. explosives, pyrotechnics, 10 Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or propellant or mixtures of these with environmental media such that the mixture poses an explosive hazard. All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, Pyrotechnic (not used or that: 10 damaged) Have not been damaged by burning or detonation Are not deteriorated to the point of instability. All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Practice 5 Been damaged by burning or detonation Deteriorated to the point of instability All UXO or DMM containing a riot control agent filler (e.g., tear gas). **Riot control** 3 All used munitions or DMM that are categorized as small arms ammunition (Physical evidence or Small arms 2 historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.]. Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. **Evidence of no munitions** 0 DIRECTIONS: Record the single highest score from above in the box to the MUNITIONS TYPE 25 right (maximum score = 30). DIRECTIONS: Document any MRS-specific data used in selecting the Munitions Type classifications in the space provided. The site was used for firing 75 mm shrapnel projectiles at the mouth of the bay, no WP is suspected. (Section 2.4.1.2 and Appendix J of the 2007 SI.)

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas.	
Former range		
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	 The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility. 	
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.]. 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

Section 2.4.1.2 of the 2007 SI.

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS.
 Note: The terms *surface, subsurface, physical evidence*, and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description		
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS. 		
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20	
 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. 		15	
Suspected (physical evidence)			
Suspected (historical evidence)	ence)		
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2	
 The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.]. 		1	
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0	
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	25	

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Section 4.3.1 and Appendix J of the 2007 SI indicates that errant munitions were confirmed at Flamenco Bay by a local diver.

MRS 03 - Page-4

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	
No barrier	 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	
Barrier to MRS access is incomplete	 There is a barrier preventing access to parts of the MRS, but not the entire MRS. 	8
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	 There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	8
provided.	MRS-specific data used in selecting the <i>Ease of Access</i> classification in the s	
5.3.3).	eational diving in this MRS there are no barriers to access. (2007 SI Report Se	CUUN

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. 		5
Scheduled for transfer from DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied. 	3
DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year. 	0
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

Section 2.3 of the 2007 SI notes that all of the land acquired by the military on Culebra and the surrounding cays and cayos was excessed to the Department of the Interior or transferred to the government of Puerto Rico. The lands are currently managed by USFWS, Puerto Rico Dept. of Natural Resources or the Municipality of Culebra.

MRS 03 - Page-6

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

Note: If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

Classification	 Description There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. 	
> 500 persons per square mile		
100–500 persons per square mile	There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	3
< 100 persons per square mile	 There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. 	
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the Population Density classification in	the space
Section 2.2.7 of the 2007 SI not obtained from Census 2000.	es that the population density of the municipality of Culebra is 71.8 persons pe	er mile, as

7

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score	
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.		
16 to 25 inhabited structures	 There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	4	
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3	
6 to 10 inhabited structures	• There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2	
1 to 5 inhabited structures	• There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1	
0 inhabited structures	 There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	0	
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5	

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

MRS 3 is located within a two-mile radius surrounding the Municipality of Culebra which has just under 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score	
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 		
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4	
• Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.		3	
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2	
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1	
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5	

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

MRS 3 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score	
Ecological and cultural resources present	 There are both ecological and cultural resources present on the MRS. 	5	
Ecological resources present	There are ecological resources present on the MRS.	3	
Cultural resources present	There are cultural resources present on the MRS.	3	
 There are no ecological resources or cultural resources present on the MRS. 		0	
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3	
	y MRS-specific data used in selecting the <i>Ecological and/or Cultural Resource</i> n the space provided.	es	
	purposes; areas within the vicinity of the site are FWS refuge areas. No cultura the site per the 2007 SI (Section 2.2.6) and the 2006 SSWP.	1	

MRS 03 - Page-10

Determini	Table 10 ng the EHE Module Rating			
		Source	Score	Value
DIRECTIONS:	Explosive Hazard Factor Data El	ements		
DIRECTIONS.	Munitions Type	Table 1	25	
 From Tables 1–9, record the data element scores in the 	Source of Hazard	Table 2	10	35
Score boxes to the right.	Accessibility Factor Data Element	nts		
2. Add the Score boxes for each	Location of Munitions	Table 3	25	
of the three factors and record this number in the Value boxes	Ease of Access	Table 4	10	40
to the right.	Status of Property	Table 5	5	
Add the three Value boxes and record this number in the EHE	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 6	1	
4. Circle the appropriate range for	Population Near Hazard	Table 7	5	14
the EHE Module Total below.	Types of Activities/ Structures	Table 8	5	14
5. Circle the EHE Module Rating	Ecological and /or Cultural Resources	Table 9	3	
that corresponds to the range selected and record this value in the EHE Module Rating box	EHE MODULE TOTAL 89			89
found at the bottom of the table.	EHE Module Total	EHE	Module R	ating
Note:	92 to 100		Α	
An alternative module rating may be	82 to 91	 	В	
assigned when a module letter rating is	71 to 81	ļ	С	
inappropriate. An alternative module	60 to 70	<u> </u>	D	
rating is used when more information is	48 to 59	ļ	E	
needed to score one or more data	38 to 47		F	
elements, contamination at an MRS was	less than 38	ļ	G	
previously addressed, or there is no			aluation Pen	
reason to suspect contamination was	Alternative Module Ratings	No Longer Required		
ever present at an MRS.	,	No Known or Suspected Explosive Hazard		
	EHE MODULE RATING		В	

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS. Note: The terms *CWM/UXO*, *CWM/DMM*, *physical evidence*, and *historical evidence* are defined in Appendix C of the

Classification Description Score The CWM known or suspected of being present at the MRS is: Explosively configured CWM that are UXO (i.e., ٠ CWM, explosive configuration CWM/UXO). 30 either UXO or damaged DMM ٠ Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, CWM mixed with UXO 25 or CWM not configured as a munition, that are commingled with conventional munitions that are UXO. The CWM known or suspected of being present at the ٠ CWM, explosive configuration that MRS are explosively configured CWM/DMM that have not 20 are undamaged DMM been damaged. The CWM known or suspected of being present at the MRS is: CWM, not explosively configured Nonexplosively configured CWM/DMM. 15 ٠ or CWM, bulk container ٠ Bulk CWM/DMM (e.g., ton container). The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942-CAIS K941 and CAIS K942 12 toxic gas set M-2/E11. Only CAIS, other than CAIS K941 and K942, are known or ٠ CAIS (chemical agent identification suspected of being present at the MRS. 10 sets) Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical Evidence of no CWM 0 evidence indicates that CWM are not present at the MRS. DIRECTIONS: Record the single highest score from **CWM CONFIGURATION** above in the box to the right (maximum score 0 = 30).

DIRECTIONS: Document any MRS-specific data used in selecting the CWM Configuration classifications in the space provided.

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI Report.). Tables 12-19 have been omitted.

Primer.

Determinir	Table 20 ng the CHE Module Rating			
		Source	Score	Value
DIRECTIONS:	CWM Hazard Factor Data Elemen	nts		
DIRECTIONS.	CWM Configuration	Table 11	0	
 From Tables 11–19, record the data element scores in the 	Sources of CWM	Table 12	0	0
Score boxes to the right.	Accessibility Factor Data Elemen	nts		
2. Add the Score boxes for each	Location of CWM	Table 13	0	
of the three factors and record this number in the Value boxes	Ease of Access	Table 14	0	0
to the right.	Status of Property	Table 15	0	
Add the three Value boxes and record this number in the CHE	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 16	0	
4. Circle the appropriate range for	Population Near Hazard	Table 17	0	<u> </u>
the CHE Module Total below.	Types of Activities/ Structures	Table 18	0	0
5. Circle the CHE Module Rating that corresponds to the range	Ecological and /or Cultural Resources	Table 19	0	
selected and record this value in the CHE Module Rating box	CHE MODULE TOTAL 0			0
found at the bottom of the table.	CHE Module Total	CHE Module Ratin		lating
Note:	92 to 100		Α	
	82 to 91		B C D	
An alternative module rating may be assigned when a module letter rating is	71 to 81			
inappropriate. An alternative module	60 to 70			
rating is used when more information is	48 to 59		<u> </u>	
needed to score one or more data	38 to 47	<u> </u>	F	
elements, contamination at an MRS was	less than 38	G Evaluation Pending		dina
previously addressed, or there is no				
reason to suspect contamination was ever present at an MRS.	Alternative Module Ratings	No Longer Required No Known or Suspected CV Hazard		
	CHE MODULE RATING	No Known or Suspected CWM Hazard		/M

Table 21 HHE Module: Groundwater Data Element Table **Contaminant Hazard Factor (CHF)** DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table. Note: Use dissolved, rather than total, metals analyses when both are available. Contaminant Maximum Concentration (µg/L) Ratios Comparison Value (µg/L) CHF > 100 H (High) [Maximum Concentration of Contaminant] $CHF = \sum_{n=1}^{\infty}$ 100 > CHF > 2 M (Medium) [Comparison Value for Contaminant] 2 > CHF L (Low) CONTAMINANT DIRECTIONS: Record the CHF Value from above in the box to the right **HAZARD FACTOR** (maximum value = H). **Migratory Pathway Factor** DIRECTIONS: Circle the value that corresponds most closely to the groundwater migratory pathway at the MRS. Classification Value Description Analytical data or observable evidence indicates that contamination in the groundwater is present at. Evident н moving toward, or has moved to a point of exposure. Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could Potential move but is not moving appreciably, or information is not sufficient to make a determination of Evident Μ or Confined Information indicates a low potential for contaminant migration from the source via the groundwater to Confined Ł a potential point of exposure (possibly due to geological structures or physical controls) MIGRATORY DIRECTIONS: Record the single highest value from above in the box to the **PATHWAY FACTOR** right (maximum value = H), **Receptor Factor** DIRECTIONS: Circle the value that corresponds most closely to the groundwater receptors at the MRS. Classification Description Value There is a threatened water supply well downgradient of the source and the groundwater is a current Identified source of drinking water or source of water for other beneficial uses such as irrigation/agriculture н (equivalent to Class I or IIA aquifer). There is no threatened water supply well downgradient of the source and the groundwater is currently Potential or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB м aquifer) There is no potentially threatened water supply well downgradient of the source and the groundwater Limited is not considered a potential source of drinking water and is of limited beneficial use (equivalent to L Class IIIA or IIIB aquifer, or where perched aquifer exists only). RECEPTOR DIRECTIONS: Record the single highest value from above in the box to the FACTOR right (maximum value = H). No Known or Suspected Groundwater MC Hazard ✓

HHE Module: Surface Water – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Со	mparison Value (μg/L)	Ratios
CHF Scale	CHF Value		Sum The Ratios	
CHF > 100	H (High)	1		
100 > CHF > 2	M (Medium)	CHF = \sum	[Maximum Concentration of Co	ntaminantj
2 > CHF	L (Low)		[Comparison Value for Contar	ninant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above	in the box to the right	
DIRECTIONS: Circle the Classification	کر سے بنایا استان ہے۔ یہ ان استان سے معارفات ہے ہیں ان جو انہا ہے جو مطلقات اور یہ جو مطلقات اور ان کے انہا ہے ا	the surface		/RS. Value
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			M
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =		om above in the box to the	
DIRECTIONS: Circle th	Receptor F ne value that corresponds most closely to		water receptors at the MRS.	Value
Identified	Identified receptors have access to surface water	· · · · · · · · · · · · · · · · · · ·	mination has moved or can move.	H
Potential	Potential for receptors to have access to surface move.	water to which	contamination has moved or can	М
Limited	Little or no potential for receptors to have access or can move.	to surface wate	er to which contamination has moved	L
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value		om above in the box to	
	No Known or Suspected Su	Inface Water	(Human Endpoint) MC Hazard	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DIRECTIONS: Record values Calcula compa addition record	(from Appendix B) in the table below. A ate and record the ratios for each contam rison value . Determine the CHF by add hal contaminants recorded on Table 27.	Endpoint Data Element Table <u>4 Factor (CHF)</u> Intaminants in the site's sediment and their c dditional contaminants can be recorded on T ninant by dividing the maximum concentrat ling the ratios for each medium together, inc Based on the CHF, use the CHF Scale to de suspected MC hazard for human endpoints p	able 27. ion by the cluding etermine and
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	— Maximum Concentration of C	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Maximum Concentration of C]}$	ontarianantj
2 > CHF	L (Low)	[Comparison Value for Conta	iminantj
CONTAMINANT DIRECTIONS: Record the CHF Value from above in the box to the right maximum value = H).			
	Migratory Pathw		
DIRECTIONS: Circle the Classification	Des	the sediment migratory pathway at the MRS cription	6. Value
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expose	that contamination in the sediment is present at, ure.	Н
Potential		tly beyond the source (i.e., tens of feet), could move ot sufficient to make a determination of Evident or	М
Confined	Information indicates a low potential for contamin potential point of exposure (possibly due to prese	nant migration from the source via the sediment to a ence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	h <u>est value</u> from above in the box to the = H).	
DIRECTIONS: Circle th Classification	Receptor F ne value that corresponds most closely to Des		Value
Identified	Identified receptors have access to sediment to v	which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment	nt to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> the right (maximum val		
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard	~

	Table	24 Ical Endpoint Data Element Table	
	Contaminant Hazard	<u>diFactor (CHF)</u>	×
DIRECTIONS: Record	the maximum concentrations of all co	ntaminants in the MRS's surface water and t	heir recorded on
Table 2	7. Calculate and record the ratios for ea	ach contaminant by dividing the maximum	· · · · ·
resnos 🦇 👘 concer	tration by the comparison value. Det	armine the CHF by adding the ratios for each	h medium
Scale t	o determine and record the CHF Value.	rded on Table 27, Based on the CHF, use the there is no known or suspected MC hazar	d for
ecologi	cal endpoints present in the surface wate	ar, select the box at the bottom of the table.	
	rather/than total, metals analyses when i		
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios 🐳
· · · · · · · · · · · · · · · · · · ·			
CHF Scale	CHF Value	Sum the Ratios	i l
CHF > 100	H (High)	$CHF = \sum \sum \sum \sum$	ontaminantl
100 > CHF > 2	M (Medium)	CHF = CHF = Comparison Value for Conta	minont
2 > CHF	L (Low)	[Companson value for Conta	annnang
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).		
HAZARD FACTOR	(maximum value ≓ Ӈ). Migratory/Pathy e value that corresponds most closely to	vay Factor •the Surface water migratory pathway at the	MRS.
HAZARD FACTOR	(maximum value ≕H). Migratory Rathy e value that corresponds most closely to Des Analytical data or observable evidence indicates	vay Factor the surface water migratory pathway at the cription that contamination in the surface water is present at,	MRS. Value
HAZARD FACTOR DIRECTIONS: Circle th Classification	(maximum value = H). Mignatony Rathw e value that corresponds most closely to Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expos Contamination in surface water has moved only	vay Factor the surface water migratory pathway at the cription that contamination in the surface water is present at,	Value 🦼
HAZARD FACTOR DIRECTIONS: Circle in Classification Evident	(maximum.value = H). Migratony/Rathy e value that corresponds most closely to Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expos Contamination in surface water has moved only move but is not moving appreciably, or information or Confined.	vay Factor the surface water migratory pathway at the cription that contamination in the surface water is present at, sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident mant migration from the source via the surface water	Value /
HAZARD FACTOR DIRECTIONS: Circle th Classification Evident Potential	(maximum.value = H). Migratony.Rathy e value that corresponds most closely to Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expos Contamination in surface water has moved only move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to controls).	vay Factor the surface water migratory pathway at the cription that contamination in the surface water is present at, sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident nant migration from the source via the surface water presence of geological structures or physical <u>hest value</u> from above in the box to the	Value /
HAZARD FACTOR DIRECTIONS: Circle th Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR	(maximum value = H). Migratony Rathy e value that corresponds most closely to Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expos Contamination in surface water has moved only move but is not moving appreciably, or information or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to controls). DIRECTIONS: Record the single hig right (maximum value-	vay Factor whe surface water migratory pathway at the cription that contamination in the surface water is present at, sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident mant migration from the source via the surface water presence of geological structures or physical hest value from above in the box to the = (H).	Value /
HAZARD FACTOR DIRECTIONS: Circle th Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle th	(maximum value = H). Migratony Rathy e value that corresponds most closely to Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expos Contamination in surface water has moved only move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to controls). DIRECTIONS: Record the single hig right (maximum value). Receptor free value, that corresponds most closely do	vay. Factor whe surface water migratory pathway at the cription that contamination in the surface water is present at, sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident mant migration from the source via the surface water presence of geological structures or physical hest value from above in the box to the = (H).	Value /
HAZARD FACTOR DIRECTIONS: Circle th Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR	(maximum.value =i.H). Migratory Rathy e value that corresponds most closely to Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expose Contamination in surface water has moved only move but is not moving appreciably, or informatio or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to controls). DIRECTIONS: Record the single hig right (maximum value) Receptor in e value that corresponds most closely to Des	vay. Factor whe surface water migratory pathway at the cription that contamination in the surface water is present at, sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident mant migration from the source via the surface water presence of geological structures or physical hest value from above in the box to the = (H).	Kalue A
HAZARD FACTOR DIRECTIONS: Circle th Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle th Classification	(maximum value = H). Migratony Rathy e value that corresponds most closely to Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expose Contamination in surface water has moved only move but is not moving appreciably, or information or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to controls). DIRECTIONS: Record the single hig right (maximum value- Receptor): e value, that corresponds most closely to Des Identified receptors have access to surface wate Potential for receptors to have access to surface	val. Factor when Surface water migratory pathway at the cription that contamination in the surface water is present at, sure. Slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident mant migration from the source via the surface water presence of geological structures or physical hest value from above in the box to the = (H) .	Value /
HAZARD FACTOR DIRECTIONS: Circle th Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle th Classification	(maximum.value = H). Migratony/Rathy e value that corresponds most closely to Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expos Contamination in surface water has moved only move but is not moving appreciably, or information or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to controls). DIRECTIONS: Record the single hig right (maximum value). Receptor F e value that corresponds most closely to Des Identified receptors have access to surface wate Potential for receptors to have access to surface move.	vay. Factor when Stinface, water migratory pathway at the cription that contamination in the surface water is present at, sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident mant migration from the source via the surface water presence of geological structures or physical hest value from above in the box to the $= 1$). actor The surface water receptors at the MRS. cription r to which contamination has moved or can move.	Value H M L Value H
HAZARD FACTOR DIRECTIONS: Circle th Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle th IClassification	(maximum.value = H). Migratony/Rathy e value that corresponds most closely to Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expose Contamination in surface water has moved only move but is not moving appreciably, or information or Confined. Information indicates a low potential for contamin to a potential point of exposure (possibly due to controis). DIRECTIONS: Record the single hig right (maximum value). Receptor F e value that corresponds most closely to Des Identified receptors have access to surface wate Potential for receptors to have access to surface move. Little or no potential for receptors to have access or can move. DIRECTIONS: Record the single hig	vav. Factor whe surface water migratory pathway at the cription that contamination in the surface water is present at, sure. slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident nant migration from the source via the surface water presence of geological structures or physical hest value from above in the box to the = (H). actor Intersurface water receptors at the MRS cription water to which contamination has moved or can move.	Value H M L Value H M

MRS 03 - Page-17 September 2007 Contract W912DY-04-D-0005

DIRECTIONS: Record values Calcula compa addition record	<u>Contaminant Hazar</u> I the maximum concentrations of all co (from Appendix B) in the table below. A ate and record the ratios for each contar arison value. Determine the CHF by ad nal contaminants recorded on Table 27.	al Endpoint Data Element Table <u>d Factor (CHF)</u> ontaminants in the MRS's sediment and their of Additional contaminants can be recorded on T minant by dividing the maximum concentrati ding the ratios for each medium together, incl Based on the CHF, use the CHF Scale to de suspected MC hazard for ecological endpoints	able 27. on by the luding termine and
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)		entominantl
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Co$	manninantj
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	e from above in the box to the right	
	•	o the sediment migratory pathway at the MRS	
Classification		scription that contamination in the sediment is present at,	Value
Evident	moving toward, or has moved to a point of expos	sure.	H
Potential		ntly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or	М
Confined		nant migration from the source via the sediment to a ence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value	hest value from above in the box to the = H).	
DIDENTIONS: Circle th	Receptor F	actor	
DIRECTIONS: Circle th Classification	ne value that corresponds most closely to	o the sediment receptors at the MRS.	Value
Identified	Identified receptors have access to sediment to v		······································
		nt to which contamination has moved or can move.	н
Potential			M
Limited	Little of no potential for receptors to have access can move.	s to sediment to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value =	hest value from above in the box to the = H).	
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard	✓

September 2007 Contract W912DY-04-D-0005

compar Table 27 concent together Scale to	ison values (from Appendix B) in the t 7. Calculate and record the ratios for ex- tration by the comparison value. Det 5, including additional contaminants record 6 determine and record the CHF Value, ace soil, select the box at the bottom of	il Data Element Table <u>d Factor (CHF)</u> ontaminants in the MRS's surface soil and the able below. Additional contaminants can be r each contaminant by dividing the maximum termine the CHF by adding the ratios for each orded on Table 27. Based on the CHF, use the If there is no known or suspected MC hazard	ecorded on medium ne CHF d present in
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	$CHF = \sum_{i=1}^{i} [Maximum Concentration of C]$	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{10000000000000000000000000000000000$	
2 > CHF	L (Low)	[Comparison Value for Conta	aminantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Val (maximum value = H		
	Migratory Path		
DIRECTIONS: Circle the Classification		o the surface soil migratory pathway at the MI scription	RS. Value
Evident	Analytical data or observable evidence indicat moving toward, or has moved to a point of exp	es that contamination in the surface soil is present at, osure.	н
Potential	Contamination in surface soil has moved only	slightly beyond the source (i.e., tens of feet), could ation is not sufficient to make a determination of	М
Confined	Information indicates a low potential for contar a potential point of exposure (possibly due to p	ninant migration from the source via the surface soil to presence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single h right (maximum value	ighest value from above in the box to the e = H).	
	Receptor	Factor	
DIRECTIONS: Circle the Classification	e value that corresponds most closely t	o the surface soll receptors at the MRS. scription	Value
Identified	Identified receptors have access to surface so	il to which contamination has moved or can move.	Н
Potential	move.	ce soil to which contamination has moved or can	М
Limited	Little or no potential for receptors to have acce or can move.	ess to surface soil to which contamination has moved	L
RECEPTOR FACTOR	DIRECTIONS: Record the single h right (maximum value	ighest value from above in the box to the e = H).	
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard	√

4		Table 27		
	HHE Module: Supr	olemental Contaminant Ha	and Factor Table	
su Inc mi Ca co	Ity use this table if there pplemental table designed licate the media in which t aximum concentrations iculate and record the rati	Intaminant Hazardi Factor (CHF) are more than five contaminants to hold information about contaminants hese contaminants are present ind their comparison values that o for each contaminant by fiven ne the CHF for each the Tharcon rent media Maximum Concentration	s present at the MRS. This hants that do not fit in the pro- hen record all contaminant a Appandix B) in the table be have maximum concentrations re expressional media-specific	evious tables s, their low. on by the
		1 		
		(

Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).

Using the reference provided below, determine each media's rating (A-G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	i i	Three-Letter Combination (Hs-Ms-Ls)	1	Media Rating (A-G)
Groundwater (Table 21)							
Surface Water/Human Endpoint (Table 22)	-	-	-	19	-		-
Sediment/Human Endpoint (Table 23)	-	-	-		-		-
Surface Water/Ecological Endpoint (Table 24)	-	-	-	-	-	یں۔ جنبہ ک	-
Sediment/Ecological Endpoint (Table 25)	-	-	-		-		-
Surface Soil (Table 26)		-		Ĵ,			

DIRECTIONS (cont.):

:

3. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE MODULE RATING

HHE Ratings (for reference only)

Combination -	Rating
HHH	A
ННМ	В
HHL	_
НММ	С
HML	
МММ	D
HLL	_
MML	E
MLL	F
LLL	G
	Evaluation Pending
	No Longer Required
Alternative Module Ratings	No Known or Suspected MC Hazard

MRS 03 is an underwater MRS that is hydrologically connected to the Atlantic Ocean. The mouth of the Bay is wide and there are no tidal restrictions. The ocean would dilute MC; therefore, an MC hazard cannot exist in this area

Table 29 MRS Priority

DIRECTIONS: In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		A	1		
A	2	В	2	A	2
B	3	С	3	В	3
С	4	D	4	С	4
D	5	Е	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Pending	Evaluation Pending		Evaluation Pending	
No Longer	Required	No Longer Required		No Longer Required	
No Known or Susp Haza		No Known or Su Haza		No Known or Suspected MC Hazar	
	М	RS or ALTERNAT	IVE PRIORITY	3	

MRS 03 - Page-22

MRSPP Evaluation

MRS 04

-

This page intentionally left blank.

.

Table A MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS 04 - Flamenco Lagoon Maneuver Area

Component: US Navy and US Marines

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 4 Flamenco Lagoon Maneuver Area (I02PR006804)

Date Information Entered/Updated: January 2007/ April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

	✓SI	Q RI	🛛 FS	🗆 RD
🗆 RA-C	□ RIP	RA-O		

Media Evaluated (check all that apply):

	✓ Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
✓Sediment (ecological receptor)	Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 04, consisting of approximately 550 acres includes Flamenco Lagoon and the hillside east of the lagoon. This area was used for direct and indirect fire of small arms, mortars and 75mm projectiles.

Description of Pathways for Human and Ecological Receptors:

Soils and sediment from Flamenco Lagoon were sampled as these are considered the most likely location for MC. Access to the site is unrestricted.

Description of Receptors (Human and Ecological): A public beach and wildlife refuge are nearby.

	EHE Module: Munitions Type Data Element Table		
all munitions	classifications of munitions and their descriptions. Circle the score(s) that correspon types known or suspected to be present at the MRS.		
Note: The terms practice mu the Primer.	initions, small arms, physical evidence, and historical evidence are defined in Append	lix C of	
Classification	Description		
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30	
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25	
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20	
High explosive (unused)	All DMM containing a high explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15	
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are:	15	
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10	
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	10	
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5	
Riot control	All UXO or DMM containing a riot control agent filler (e.g., tear gas).	3	
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2	
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0	
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	30	

.

.

-

2007 SI)

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Scor
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas. 	10
Former munitions treatment i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	 The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility. 	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.]. 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS.
 Note: The terms *surface*, *subsurface*, *physical evidence*, and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris, such fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2
Small arms (regardless of location)	 The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.]. 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Section 4.4 and Appendix J of the 2007 SI there is no record of MEC being found on the MRS. MEC is suspected based on the historical use of the MRS.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

Note: The term barrier is defined in Appendix C of the Primer.

 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	10
	10
 There is a barrier preventing access to parts of the MRS, but not the entire MRS. 	8
• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
 There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	0
DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10
	 entire MRS. There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS. There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS. DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. 	5
Scheduled for transfer from DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied. 	3
DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
provided.	MRS-specific data used in selecting the <i>Status of Property</i> classification in the status of the land acquired by the military on Culebra and the surrounding ca	

cayos was excessed to the Department of the Interior or transferred to the government of Puerto Rico. The lands are currently managed by USFWS, Puerto Rico Dept. of Natural Resources, the Municipality of Culebra, or by private owners.

_ _

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

Note: If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

Classification	Description	Score
> 500 persons per square mile	 There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. 	5
100–500 persons per square mile	• There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	1
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the Population Density classification in	the space
Section 2.2.7 of the 2007 SI not obtained from Census 2000.	es that the population density of the municipality of Culebra is 71.8 persons pe	er mile, as

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	• There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	• There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	• There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
5 to 10 inhabited structures	• There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
I to 5 inhabited structures	• There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

MRS 4 is located within a two-mile radius surrounding the Municipality of Culebra which has just fewer than 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term inhabited structure is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4
Agricultural, forestry	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. 	3
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2
No known or recurring activities	 There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary. 	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the **Types of Activities/Structures** classifications in the space provided.

MRS 4 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	 There are no ecological resources or cultural resources present on the MRS. 	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3
	y MRS-specific data used in selecting the <i>Ecological and/or Cultural Resource</i> n the space provided.	es
	al purposes; areas within the vicinity of the site are FWS refuge areas. No cultur the site per the 2007 SI (Section 2.2.6) and the 2006 SSWP.	ral

.

Determinir	Table 10 ng the EHE Module Rating			
		Source	Score	Value
DIRECTIONS:	Explosive Hazard Factor Data El	ements		
DIRECTIONS.	Munitions Type	Table 1	30	
 From Tables 1–9, record the data element scores in the 	Source of Hazard	Table 2	10	40
Score boxes to the right.	Accessibility Factor Data Eleme	nts		· · · · · · · · · · · · · · · · · · ·
Add the Score boxes for each of the three factors and record	Location of Munitions	Table 3	5	
this number in the Value boxes	Ease of Access	Table 4	10	20
to the right.	Status of Property	Table 5	5	
Add the three Value boxes and record this number in the EHE	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 6	1	
 Circle the appropriate range for the EHE Module Total below. 	Population Near Hazard	Table 7	5	14
	Types of Activities/ Structures	Table 8	5	14
5. Circle the EHE Module Rating	Ecological and /or Cultural Resources	Table 9	3	
that corresponds to the range selected and record this value in the EHE Module Rating box	EHE MODULE TOTAL 7		74	
found at the bottom of the table.	EHE Module Total	EHE	Module R	ating
Note:	92 to 100		Α	
An alternative module rating may be	82 to 91		B	
assigned when a module letter rating is	71 to 81		С	
inappropriate. An alternative module	60 to 70		D	
rating is used when more information is needed to score one or more data	48 to 59	<u> </u>	E	
elements, contamination at an MRS was	38 to 47 less than 38		F G	
previously addressed, or there is no	less than 50		aluation Pen	dina
reason to suspect contamination was				
ever present at an MRS.	Alternative Module Ratings	No Longer Required No Known or Suspected		
		Explosive Hazard		
	EHE MODULE RATING		С	

...

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS. **Note:** The terms *CWM/UXO*, *CWM/DMM*, *physical evidence*, and *historical evidence* are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, explosive configuration either UXO or damaged DMM	 The CWM known or suspected of being present at the MRS is: Explosively configured CWM that are UXO (i.e., CWM/UXO). Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS is: Nonexplosively configured CWM/DMM. Bulk CWM/DMM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942- toxic gas set M-2/E11. 	12
CAIS (chemical agent identification sets)	 Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	• Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the CWM Configuration classifications in the space provided.

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI Report.). Tables 12-19 have been omitted.

MRS 04 - Page - 12

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

Determini	Table 20 ng the CHE Module Rating			
		Source	Score	Value
DIRECTIONS:	CWM Hazard Factor Data Eleme	nts		
	CWM Configuration	Table 11	0	
 From Tables 11–19, record the data element scores in the 	Sources of CWM	Table 12	0	0
Score boxes to the right.	Accessibility Factor Data Eleme	nts	·	
2. Add the Score boxes for each	Location of CWM	Table 13	0	
of the three factors and record this number in the Value boxes	Ease of Access	Table 14	0	0
to the right.	Status of Property	Table 15	0	
 Add the three Value boxes and record this number in the CHE 	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 16	0	
4. Circle the appropriate range for the CHE Module Total below.	Population Near Hazard	Table 17	0	
	Types of Activities/ Structures	Table 18	0	0
5. Circle the CHE Module Rating that corresponds to the range	Ecological and /or Cultural Resources	Table 19	0	
selected and record this value in the CHE Module Rating box	CHE MODULE TOTAL 0			0
found at the bottom of the table.	CHE Module Total	CHE	Module F	ating
N=4=-	92 to 100		A	
Note:	82 to 91		B	<u></u>
An alternative module rating may be assigned when a module letter rating is	71 to 81		C	
inappropriate. An alternative module	<u>60 to 70</u>		D	
rating is used when more information is	48 to 59	+	E F	
needed to score one or more data	38 to 47	+	F G	
elements, contamination at an MRS was	less than 38	E	aluation Pen	dina
previously addressed, or there is no			Longer Req	
reason to suspect contamination was ever present at an MRS.	Alternative Module Ratings		n or Suspe Hazard	
	CHE MODULE RATING	No Known or		/M

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
			- <u></u>		
CHF > 100	H (High)	CHF = $\sum $ [Maximum Concentration of C	Contaminant]		
100 > CHF > 2	M (Medium)	[Comparison Value for Conta	aminanti		
2 > CHF	L (Low)				
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	e from above in the box to the right			
	Migratory Path				
		o the groundwater migratory pathway at the M			
Classification		scription	Value H		
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
	Receptor F	actor			
		o the groundwater receptors at the MRS.			
Classification	and the second	scription	Value		
ldentified	source of drinking water or source of water for c (equivalent to Class I or IIA aquifer).	adient of the source and the groundwater is a current other beneficial uses such as irrigation/agriculture	н		
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aguifer).				
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).				
RECEPTOR FACTOR	التقاد المتكاد البان بالبابين بسيانية الكرافة بكالمتكال التنابي ببسيبي سيريس والمتعادي والفني والمرشة	hest value from above in the box to the			
	No Kn	own or Suspected Groundwater MC Hazard			

Per TPP concurrence, no groundwater samples were collected as part of the SI.

Delivery Order 0008

Table 22 HHE Module: Surface Water - Human Endpoint Data Element Table **Contaminant Hazard Factor (CHF)** DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the surface water, select the box at the bottom of the table. Note: Use dissolved, rather than total, metals analyses when both are available. Contaminant Maximum Concentration (µg/L) Comparison Value (µg/L) Ratios **CHF** Scale **CHF Value** Sum The Ratios CHF > 100 H (High) [Maximum Concentration of Contaminant] 100 > CHF > 2 $CHF = \sum_{n=1}^{\infty}$ M (Medium) 2 > CHF [Comparison Value for Contaminant] L (Low) CONTAMINANT DIRECTIONS: Record the CHF Value from above in the box to the right HAZARD FACTOR (maximum value = H). **Migratory Pathway Factor** DIRECTIONS: Circle the value that corresponds most closely to the surface water migratory pathway at the MRS. Classification Description Value Analytical data or observable evidence indicates that contamination in the surface water is present at, Evident н moving toward, or has moved to a point of exposure. Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could Potential М move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined. Information indicates a low potential for contaminant migration from the source via the surface water to L Confined a potential point of exposure (possibly due to presence of geological structures or physical controls). MIGRATORY DIRECTIONS: Record the single highest value from above in the box to the **PATHWAY FACTOR** right (maximum value = H). **Receptor Factor** DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS. Classification Description Value Identified receptors have access to surface water to which contamination has moved or can move. Identified н Potential for receptors to have access to surface water to which contamination has moved or can Potential M move. Little or no potential for receptors to have access to surface water to which contamination has moved L Limited or can move RECEPTOR DIRECTIONS: Record the single highest value from above in the box to FACTOR the right (maximum value = H). No Known or Suspected Surface Water (Human Endpoint) MC Hazard

Per TPP concurrence, no surface water samples were collected as part of the SI

HHE Module: Sediment – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the site's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the sediment, select the box at the bottom of the table.

21000 81	77000	0.27	
81	E200		
	5300	0.015	
0.58	14	0.041	
93	2800	0.03	
CHF Value	Sum The Ratios	2.13	
H (High)	- Maximum Concentration of C		
M (Medium)		Jillaninang	
L (Low)	[Comparison Value for Conta	iminant	
IRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right	М	
value that corresponds most closely to	the sediment migratory pathway at the MRS	S. Value	
Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.			
Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to presence of geological structures or physical controls).			
DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
	•		
	A hard second	Value	
entitied receptors have access to sediment to w	Inich contamination has moved of can move.	Н	
Potential for receptors to have access to sediment to which contamination has moved or can move.			
Little or no potential for receptors to have access to sediment to which contamination has moved or can move.			
		Н	
	CHF Value H (High) M (Medium) L (Low) IRECTIONS: Record the CHF Value maximum value = H). Migratory Pathw ralue that corresponds most closely to Desc nalytical data or observable evidence indicates i oving toward, or has moved to a point of expose ontamination in sediment has moved only slight it is not moving appreciably, or information is no onfined. formation indicates a low potential for contamin- otential point of exposure (possibly due to prese IRECTIONS: Record the single high right (maximum value = <u>Receptor Fa</u> alue that corresponds most closely to Desc entified receptors have access to sediment tue or no potential for receptors to have access an move. IRECTIONS: Record the single high	CHF Value Sum The Ratios H (High) (Midedium) (Maximum Concentration of Concentrating concentration o	

Background concentrations for sediment are not available. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed contribute to the score. MPF is rated M given existing information. RF is rated high given the recreational use of the area.

HHE Module:	Surface Water – Ecological Endpoint Data Element Table
	Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	ninant Maximum Concentration (μg/L) Comparison Value (μg/L)		Ratios	
<u></u>	······································			
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100	H (High)			
100 > CHF > 2	M (Medium)	CHF = $\sum_{n=1}^{\infty}$ [Maximum Concentration of C	ontaminantj	
2 > CHF	L (Low)	[Comparison Value for Conta	iminant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	•	
	Migratory Pathw	vay Factor		
	e value that corresponds most closely to	the surface water migratory pathway at the	MRS. Value	
Classification	Description			
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).			
MIGRATORY	DIRECTIONS: Record the single hig	hest value from above in the box to the		
PATHWAY FACTOR	right (maximum value = H).			
DIDECTIONS OF H	Receptor F			
Classification	•	the surface water receptors at the MRS.	Value	
		r to which contamination has moved or can move.	H	
Identified				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access or can move.	s to surface water to which contamination has moved		
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value :	<u>hest value</u> from above in the box to the = H).		
	No Known or Suspected Surfa	ce Water (Ecological Endpoint) MC Hazard		

Per TPP concurrence, no surface water samples were collected as part of the SI

1

HHE Module: Sediment – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison values** (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the **ratios** for each medium together, including additional contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard for ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Co	Comparison Value (mg/kg)	
Copper	93		16	
Iron	40000		20000	2
Lead	12		31	0.387
Manganese	550	460		1.19
Mercury	0.040		0.2	
CHF Scale	CHF Value		Sum the Ratios	10.20
CHF > 100	H (High)		Maximum Concentration of Cont	aminantl
100 > CHF > 2	M (Medium)	CHF = \sum		
2 > CHF	L (Low)		[Comparison Value for Contami	nant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H		ve in the box to the right	м

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description	Value	
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	Н	
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to presence of geological structures or physical controls).	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	М	
	Receptor Factor		
DIRECTIONS: Circle th	ne value that corresponds most closely to the sediment receptors at the MRS.		
Classification	Description	Value	
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М	
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	L	
RECEPTOR FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).	Н	
	No Known or Suspected Sediment (Ecological Endpoint) MC Hazard		

Background concentrations for sediment are not available. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed contribute to the score. MPF is rated M given existing information. RF is rated high given the ecological resources in the area.

MRS 04 - Page - 18

September 2007 Contract W912DY-04-D-0005

HHE Module: Surface Soil Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio	
Strontium	3400	46000	0.07	
······································			·	
CHF Scale	CHF Value	Sum the Ratios	0.07	
CHF > 100	H (High)	$CHF = \sum [Maximum Concentration of C]$		
100 > CHF > 2	M (Medium)			
2 > CHF	L (Low)	[Comparison Value for Conta	aminant	
CONTAMINANT	DIRECTIONS: Record the CHF Val	ue from above in the box to the right		
HAZARD FACTOR	(maximum value = H		L	
	Migratory Path			
	· · · ·	o the surface soil migratory pathway at the MF		
Classification		scription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could tential move but is not moving appreciably, or information is not sufficient to make a determination of			
r Viensiai	Evident or Confined.		M	
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to presence of geological structures or physical controls).			
MIGRATORY	DIRECTIONS: Record the single highest value from above in the box to the			
PATHWAY FACTOR	right (maximum value = H).			
	Receptor I			
	•	o the surface soil receptors at the MRS.		
Classification		scription	Value	
Identified	Identified receptors have access to surface so	il to which contamination has moved or can move.	Н	
Potential		ce soil to which contamination has moved or can		
Potential	move.		М	
Limited	Little or no potential for receptors to have acce or can move.	ess to surface soil to which contamination has moved	L	
RECEPTOR FACTOR		ghest value from above in the box to the		
	right (maximum value	e = H).	<u>ب</u>	
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard		

Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score.

Pathway and receptor factors are rated low given the lack of contamination measured in the soil.

12.

1

-, -,

I CIVIE 47 HIHE Module: Supplemental Contaminant Hazard Factor Table <u>Contaminant Hazard Factor (CHP)</u> DIRECTIONS: Only use this table if there are more than five contaminants present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. These record all contaminants, their maximum concentrations and their comparison values (from Appendix B) in the table below. Calculate and record the ratio for each contaminant by dyiding the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables. Note: Remember not to add ratios if om different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Sediment	Iron	40000	23000	1.74
Sediment	Lead	12	400	0.03
Sediment	Mercury	0.040	23	0.002
Sediment	Molybdenum	0.27	380	0.0007
Sediment	Strontium	210	46000	0.005
Sediment	Zinc	74	23000	0.0032
Sediment Ecological Endpoint	Zinc	74	120	0.62
·				

Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A–G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)					
Surface Water/Human Endpoint (Table 22)	-	-	-	-	-
Sediment/Human Endpoint (Table 23)	М	М	Н	НММ	С
Surface Water/Ecological Endpoint (Table 24)	-	-	-	-	-
Sediment/Ecological Endpoint (Table 25)	М	м	н	HMM	С
Surface Soil (Table 26)	L	L	L	LLL	G

DIRECTIONS (cont.):

- 4. Select the single highest Media Rating (A is
- highest; G is lowest) and enter the letter in the HHE Module Rating box below.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed or there is no reason to suspect contamination was ever present at an MRS.

HHE MODULE RATING

HHE Ratings (for reference only)

Combination	Rating
ннн	A
ННМ	В
HHL	_
НММ	T C
HML	
МММ	D
HLL	_
MML.	E
MLL	F
LLL	G
	Evaluation Pending
Alternative Module Ratings	No Longer Required
	No Known or Suspected MC Hazard

С

Table 29 MRS Priority

DIRECTIONS: In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		A	1		
A	2	В	2	A	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	Е	5	D	5
Е	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Pending	Evaluation	Pending	Evaluation	Pending
No Longer	Required	No Longer Required		No Longer Required	
No Known or Susp Haza		No Known or Su. Haza		No Known or Suspected MC Haza	
	М	RS or ALTERNAT		4	!

MRS 04 - Page - 22

September 2007 Contract W912DY-04-D-0005

.

MRSPP Evaluation

MRS 05

*

١

.

This page intentionally left blank.

K - 76

_---

Delivery Order 0008

/

.

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS 05 – Combat and Mortar Range

Component: US Marine Corps

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.); MRS 5 Combat and Mortar Range (I02PR006805)

Date Information Entered/Updated: January 2007/ April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

	✓SI	🗅 RI	🗅 FS	
RA-C		🗆 RA-O		

Media Evaluated (check all that apply):

Groundwater	✓Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
✓ Sediment (ecological receptor)	Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 05, consisting of approximately 2,842 acres, includes most of the landmass between Resaca Beach and Carenero Point. This area was the main on-island area used by the Marine Corps for mortar, small arms and some artillery training from 1922 through the late 1940s. MRS 05 includes 2 1936 Combat Training Areas leased with the intent of combat, target and sweep of fire range training. A 1924 standing barrage training area is also present in the MRS. Historical Records indicate that 1,500 acres of land within MRS 05 and part of MRS 06 were leased in 1924 for gun emplacements and other possible camp sites

Description of Pathways for Human and Ecological Receptors:

Soils and sediment from a pond on the site were sampled as these are considered the most likely location for MC. Access to the site is unrestricted.

Description of Receptors (Human and Ecological):

Public beaches, residences, and fish and wildlife refuge are located in the area.

Table 1 EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with <u>all</u> munitions types known or suspected to be present at the MRS.

Note: The terms practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20
High explosive (unused)	All DMM containing a high explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are:	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a not control agent filler (e.g., tear gas).	3
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	30

HE and practice mortars and small arms were used at the MRS (Section 2.4.1.4 and Appendix J of the 2007 SI). HE mortars are rated sensitive as the models used may contain white phosphorus fillers.

MRS 05 - Page - 2

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	 The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility. 	4
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.]. 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS.
 Note: The terms *surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris, such fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2
Small arms (regardless of location)	 The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.]. 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	25

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Sections. 2.4.1.4 of the SI Report notes that MEC has been identified on portions of the property.

MRS 05 - Page - 4

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	10
Barrier to MRS access is incomplete	 There is a barrier preventing access to parts of the MRS, but not the entire MRS. 	8
Barrier to MRS access is complete but not monitored	 There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	5
Barrier to MRS access is complete and monitored	• There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	8
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <i>Ease of Access</i> classification in the s	pace
There are no fences or barriers northern portion of the MRS (20	to the MRS, however vegetation is extremely dense and restricts access to mu 07 SI Report, Section 5.5.3.1).	ich of the

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. 	5
Scheduled for transfer from DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.	3
DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year. 	0
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <i>Status of Property</i> classification in th	e space

Section 2.3 of the 2007 SI notes that all of the land acquired by the military on Culebra and the surrounding cays and cayos was excessed to the Department of the Interior or transferred to the government of Puerto Rico. The lands are currently managed by USFWS, Puerto Rico Dept. of Natural Resources, the Municipality of Culebra or are privately owned.

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

Note: If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

Classification	Description	Score
> 500 persons per square mile	 There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. 	5
100–500 persons per square mile	• There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	3
< 100 persons per square mile	 There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. 	1
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the Population Density classification in	the space
Section 2.2.4 of the 2007 SI not obtained from Census 2000.	es that the population density of the municipality of Culebra is 71.8 persons pe	er mile, as

.

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	• There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	 There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	4
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
1 to 5 inhabited structures	There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

According to the US Census there are approximately 550 residents on site and within ¼ mile of the MRS (Table 2.2). In addition, the MRS is located within a two-mile radius of the municipality of Culebra, which has just under 2,000 residents (2007 SI Report Section 2.2.7 and Table 2.2).

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term inhabited structure is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4
Agricultural, forestry	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. 	3
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2
No known or recurring activities	• There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

MRS 5 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	 There are both ecological and cultural resources present on the MRS. 	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3
	/ MRS-specific data used in selecting the <i>Ecological and/or Cultural Resource</i> n the space provided.	es
	al purposes, areas within the vicinity of the site are FWS refuge areas. No cultur the site per the 2007 SI (Section 2.2.6) and the 2006 SSWP.	al

Deter	Table 10 mining the EHE Module Rating			
		Source	Score	Value
DIRECTIONS:	Explosive Hazard Factor Data El	ements		
	Munitions Type	Table 1	30	40
 From Tables 1–9, record the data element scores in the 	Source of Hazard	Table 2	10	40
Score boxes to the right.	Accessibility Factor Data Elemen	nts		
2. Add the Score boxes for each of the three factors and record	Location of Munitions	Table 3	25	
this number in the Value boxes	Ease of Access	Table 4	8	38
to the right.	Status of Property	Table 5	5	
Add the three Value boxes and record this number in the EHE	Receptor Factor Data Elements	·		
Module Total box below.	Population Density	Table 6	1	
4. Circle the appropriate range for	Population Near Hazard	Table 7	5	
the EHE Module Total below.	Types of Activities/ Structures	Table 8	5	14
5. Circle the EHE Module Rating	Ecological and /or Cultural Resources	Table 9	3	
that corresponds to the range selected and record this value the EHE Module Rating box	in EHE	EHE MODULE TOTAL 92		
found at the bottom of the table	EHE Module Total	EHE Module Rating		ating
Note:	92 to 100		Α	
An alternative module rating may be	82 to 91		В	
assigned when a module letter rating inappropriate. An alternative module	71001		С	
rating is used when more information	<u>60 to 70</u>	<u> </u>	D	
needed to score one or more data	401000		E	
elements, contamination at an MRS v	38 to 47	<u> </u>	F	
previously addressed, or there is no	less than 38	G Fuelveties Deading		dina
reason to suspect contamination was		Evaluation Pending No Longer Required		
ever present at an MRS.	Alternative Module Ratings	No Longer Required No Known or Suspected Explosive Hazard		
	EHE MODULE RATING		A	

÷

: ...

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS. Note: The terms CWM/UXO, CWM/DMM, physical evidence, and bistorical evidence are defined in Appendix C of the

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, explosive configuration either UXO or damaged DMM	 The CWM known or suspected of being present at the MRS is: Explosively configured CWM that are UXO (i.e., CWM/UXO). Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS is: Nonexplosively configured CWM/DMM. Bulk CWM/DMM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942- toxic gas set M-2/E11. 	12
CAIS (chemical agent identification sets)	 Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the CWM Configuration classifications in the space provided.

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI Report). Tables 12-19 have been omitted. Sections 2.5 and 4.4 of the 2007 SI.

MRS 05 - Page - 12

Determinir	Table 20 ng the CHE Module Rating			
		Source	Score	Value
DIRECTIONS:	CWM Hazard Factor Data Elemen	nts		
	CWM Configuration	Table 11	0	0
 From Tables 11–19, record the data element scores in the 	Sources of CWM	Table 12	0	0
Score boxes to the right.	Accessibility Factor Data Element	nts		
2. Add the Score boxes for each	Location of CWM	Table 13	0	
of the three factors and record this number in the Value boxes	Ease of Access	Table 14	0	0
to the right.	Status of Property	Table 15	0	
 Add the three Value boxes and record this number in the CHE 	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 16	0	
4. Circle the appropriate range for	Population Near Hazard	Table 17	0	
the CHE Module Total below.	Types of Activities/ Structures	Table 18	0	0
5. Circle the CHE Module Rating that corresponds to the range	Ecological and /or Cultural Resources	Table 19	0	1 -
selected and record this value in the CHE Module Rating box		MODUL	E TOTAL	0
found at the bottom of the table.	CHE Module Total	CHE	Module F	Rating
Note:	92 to 100		<u>A</u>	
An alternative module rating may be	82 to 91		<u> </u>	
assigned when a module letter rating is	71 to 81		<u> </u>	
inappropriate. An alternative module	60 to 70		<u>D</u>	
rating is used when more information is	48 to 59		<u> </u>	
needed to score one or more data	38 to 47 less than 38		G	
elements, contamination at an MRS was		Ev	aluation Pen	ding
previously addressed, or there is no				
reason to suspect contamination was ever present at an MRS.	Alternative Module Ratings	No Longer Required No Known or Suspected CWM Hazard		
	CHE MODULE RATING		own or cted CV	/M

. . .

Table 21 HHE Module: Groundwater Data Element Table <u>Contaminant Hazard Factor (CHF)</u> DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table. Note: Use dissolved, rather than total, metals analyses when both are available.					
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
CHF > 100	H (High)	$CHF = \sum $ [Maximum Concentration of C	Contaminant]		
100 > CHF > 2	M (Medium) L (Low)	[Comparison Value for Cont	aminant]		
CONTAMINANT DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).					
DIRECTIONS: Circle th Classification		vay Factor the groundwater migratory pathway at the N cription	/IRS. Value		
Evident		that contamination in the groundwater is present at,	Н		
Potential	Contamination in groundwater has moved only s	lightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident	М		
Confined	Information indicates a low potential for contamin a potential point of exposure (possibly due to get	nant migration from the source via the groundwater to plogical structures or physical controls).	L		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value =	h <u>est value</u> from above in the box to the = H).			
DIRECTIONS: Circle th Classification	Receptor F e value that corresponds most closely to Des		Value		
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture H (equivalent to Class I or IIA aguifer).				
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB M aquifer).				
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).				
RECEPTOR		hest value from above in the box to the			
FACTOR	right (maximum value =	= H).			
	No Kno	wn or Suspected Groundwater MC Hazard			

Per TPP concurrence, no groundwater samples were collected as part of the SI.

MRS 05 - Page - 14

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

HHE Module:	Surface Water – Human Endpoint Data Element Table
	Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L) Comparison Value (µg/L)			
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)			
100 > CHF > 2	M (Medium)	$CHF = \sum $ [Maximum Concentration of Co	ontaminant	
2 > CHF	L (Low)	[Comparison Value for Conta	minant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right		
DIRECTIONS: Circle th	Migratory Pathw ne value that corresponds most closely to	vay Factor the surface water migratory pathway at the	MRS.	
Classification	-	cription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).			
DIDECTIONS: Circle 4	Receptor F			
Classification		the surface water receptors at the MRS.	Value	
Identified	Ation Description Identified receptors have access to surface water to which contamination has moved or can move.			
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> the right (maximum valu			
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard		

Per TPP concurrence, no surface water samples were collected as part of the SI

1

Table 23 HHE Module: Sediment – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the site's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the sediment, select the box at the bottom of the table. Comparison Value (mg/kg) Ratios Contaminant Maximum Concentration (mg/kg) 0.18 14000 77000 Aluminum 0.005 29 5300 Barium 0.28 0.02 14 Beryllium 22 2800 0.007 Copper Sum The Ratios 1.1 **CHF Scale CHF Value** CHF = $\sum_{n=1}^{\infty}$ [Maximum Concentration of Contaminant] CHF > 100 H (High) 100 > CHF > 2 M (Medium) [Comparison Value for Contaminant 2 > CHF L (Low) DIRECTIONS: Record the CHF Value from above in the box to the right CONTAMINANT L HAZARD FACTOR maximum value = H). **Migratory Pathway Factor** DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS. Value Classification Description Analytical data or observable evidence indicates that contamination in the sediment is present at. Evident н moving toward, or has moved to a point of exposure. Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move Potential but is not moving appreciably, or information is not sufficient to make a determination of Evident or М Confined Information indicates a low potential for contaminant migration from the source via the sediment to a Confined L potential point of exposure (possibly due to presence of geological structures or physical controls). MIGRATORY DIRECTIONS: Record the single highest value from above in the box to the М **PATHWAY FACTOR** right (maximum value = H). **Receptor Factor** DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS. Classification Value Description Identified receptors have access to sediment to which contamination has moved or can move. Identified н Potential for receptors to have access to sediment to which contamination has moved or can move. Potential М Little or no potential for receptors to have access to sediment to which contamination has moved or Limited L can move RECEPTOR DIRECTIONS: Record the single highest value from above in the box to L FACTOR the right (maximum value = H). No Known or Suspected Sediment (Human Endpoint) MC Hazard

Background concentrations for sediment are not available. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed contribute to the score. MPF is rated M given existing information. RF is rated low given the low concentration of contaminants attributable to DoD activity.

MRS 05 - Page - 16

September 2007 Contract W912DY-04-D-0005

HHE Module: Surface Water – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
			·		
			<u> </u>		
			·		
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	- Maximum Concentration of C	ontaminanti		
100 > CHF > 2	M (Medium)	CHF = $\sum $ [Maximum Concentration of C	onaminang		
2 > CHF	L (Low)	[Comparison Value for Conta	iminant]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value ≈ H).	from above in the box to the right			
	Migratory Pathw	ay Factor			
DIRECTIONS: Circle th	e value that corresponds most closely to	the surface water migratory pathway at the	MRS.		
Classification	Description				
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY	DIRECTIONS: Record the single highest value from above in the box to the				
PATHWAY FACTOR	right (maximum value = H).				
DIRECTIONS: Circle th	e value that corresponds most closely to	actor the surface water receptors at the MRS.			
Classification	-	cription	Value		
Identified	Identified receptors have access to surface water to which contamination has moved or can move.				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single hig</u> right (maximum value =	h <u>est value</u> from above in the box to the = H).			
	No Known or Suspected Surface	ce Water (Ecological Endpoint) MC Hazard			

Per TPP concurrence, no surface water samples were collected as part of the SI

HHE Module: Sediment – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Ratios			
Copper	22	16	1.375		
Iron	19000	20000	0.95		
Lead	2.5	31	0.08		
Mercury	0.013	0.2	0.065		
Zinc	32	120	0.27		
CHF Scale	CHF Value	Sum the Ratios	2.74		
CHF > 100	H (High)	$CHF = \sum [Maximum Concentration of Cont$	aminantl		
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2$			
2 > CHF	L (Low)	[Comparison Value for Contami	nantj		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Valu (maximum value = H)		М		
DIRECTIONS: Circle the Classification	De	to the sediment migratory pathway at the MRS scription	Value		
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at,				
Potential	moving toward, or has moved to a point of exposure. Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle th Classification	Receptor ne value that corresponds most closely De		Value		
Identified	Identified receptors have access to sediment to which contamination has moved or can move.				
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard			

Background concentrations for sediment are not available. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed contribute to the score. MPF is rated M given existing information. RF is rated high given the ecological resources in the area.

September 2007 Contract W912DY-04-D-0005

HHE Module: Surface Soil Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg) Comparison Value (mg/kg)				
Aluminum	39000	77000	0.51		
Copper	160	2800	0.057		
Strontium	50	46000	0.001		
Zinc	120	23000	0.005		
CHF Scale	CHF Value	Sum the Ratios	0.57		
CHF > 100	H (High)	CHF = $\sum_{n=1}^{n} [Maximum Concentration of C$	ontaminant]		
100 > CHF > 2	M (Medium)	CHF = [Comparison Value for Conta			
2 > CHF	L (Low)	[Comparison value for Cond			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H)		L		
DIRECTIONS: Circle the Classification	· · ·	<u>way Factor</u> o the surface soil migratory pathway at the Mi scription	RS. Value		
Evident	Analytical data or observable evidence indicate moving toward, or has moved to a point of experience of the second	Н			
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle the Classification	· · ·	Factor o the surface soil receptors at the MRS. scription	Value		
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.				
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.				
RECEPTOR FACTOR	RECEPTOR FACTOR DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard			

Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score.

Pathway and receptor factors are rated low given the lack of contamination measured in the soil.

HHE Module: Supplemental Contaminant Hazard Factor Table

DIRECTIONS: Only use this table if there are more than five contaminant mazard ractor comparison value. Determine the CHF for each medium on the appropriate media-specific tables. Note: Remember not to add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Sediment	Iron	19000	23000	0.83
Sediment	Lead	2.5	400	0.006
Sediment	Mercury	0.013	23	0.0006
Sediment	Molybdenum	0.23	380	0.0006
Sediment	Strontium	2400	46000	0.052
Sediment	Zinc	32	23000	0.001
				<u></u>
······································				· ••
·····				
				<u> </u>
				-
· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·		

Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A–G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	8	Three-Letter Combination (Hs-Ms-Ls)		Media Rating (A-G)
Groundwater (Table 21)							
Surface Water/Human Endpoint (Table 22)	-	-	-		-		-
Sediment/Human Endpoint (Table 23)	L	М	L		MLL		F
Surface Water/Ecological Endpoint (Table 24)	-	-	-	20 24	-		-
Sediment/Ecological Endpoint (Table 25)	М	м	Н	,	НММ	a.	С
Surface Soil (Table 26)	L	L	L		LLL		G

DIRECTIONS (cont.):

2

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

ŝ

HHE MODULE RATING

HHE Ratings (for reference only)

С

Combination	Rating	
ННН	Α	
ННМ	В	
HHL	С	
НММ		
HML	D	
MMM		
HLL	E	
MML		
MLL	F	
LLL	LLL G	
Alternative Module Ratings	Evaluation Pending	
	No Longer Required	
	No Known or Suspected MC Hazard	

Table 29 MRS Priority

DIRECTIONS: In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
А	2	В	2	A	2
В	3	С	3	В	3
С	4	D	4	C	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8	· · · · · · · · · · · · · · · · · · ·		G	8
Evaluation Pending		Evaluation Pending		Evaluation Pending	
No Longer Required		No Longer Required		No Longer Required	
No Known or Suspected Explosive Hazard		No Known or Suspected CWM Hazard		No Known or Suspected MC Hazard	
MRS or ALTERNATIVE PRIORITY			2		

MRS 05 - Page - 22

MRSPP Evaluation

MRS 06

Ľ

, **A**

This page intentionally left blank.

-

ж,

Table A MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS 06 - Artillery Firing Area

Component: US Marine Corps

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 06 Artillery Firing Area (I02PR006806)

Date Information Entered/Updated: January 2007/ April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

D PA	✓SI		□ FS	
🗆 RA-C		RA-O		

Media Evaluated (check all that apply):

□Groundwater	Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 06 consists of approximately 826 acres, located on the eastern end of Culebra from a point at the most northern tip of Mosquito Bay, northeast to a point just west of Duck Point, and east to the end of the island. It was used by the Marine Corps for artillery firing points for exercises conducted between 1922 and the 1940s. Exercises involving small arms, stokes mortars, 75mm pack howitzers, 3-inch mortars, and 37mm HE rounds were conducted in Mosquito bay in 1936. Beginning in 1936 the Marines fired 75mm projectiles from a firing point inland of Mangrove Bay at weather channel near Culebrita. In 1939 the Marines fired from 1000 yards northeast of Mosquito Bay toward the cays to the east. 37mm rounds were fire from Mosquito bay west to water targets between Point Vaca and Snapper Shoal. Portions of MRS 06 and MRS 05were leased in 1924 for gun emplacements and other possible camp sites.

Description of Pathways for Human and Ecological Receptors:

Soils at the site were sampled as these are considered the most likely location for MC. Access to the site is unrestricted and residential areas are located in the area.

Description of Receptors (Human and Ecological): Residents are located on the MRS.

ł

Table 1 EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with <u>all</u> munitions types known or suspected to be present at the MRS.

Note: The terms practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

	Description	Score
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20
High explosive (unused)	All DMM containing a high explosive filler that:	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability.	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	 The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility. 	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	. 2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.]. 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

Section 2.4.1.5 of the 2007 SI Report.

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS.
 Note: The terms *surface*, *subsurface*, *physical evidence*, and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris, such fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2
Small arms (regardless of location)	 The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.]. 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	5

DIRECTIONS: Document any MRS-specific data used in selecting the Location of Munitions classifications in the space provided.

There is no record of MEC or MD being found in this MRS; however, military use of this portion of the island did occur, The 2007 SI field team did not report any MEC or MD findings. (2007 SI Report Section 4.6).

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

Note: The term barrier is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	10
Barrier to MRS access is incomplete	 There is a barrier preventing access to parts of the MRS, but not the entire MRS. 	8
Barrier to MRS access is complete but not monitored	There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	 There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the Ease of Access classification in the s	pace
	There are no fences or access barriers on the MRS. Although vegetation restricts access to some areas, access is no prevented. (2007 SI Report paragraph 5.6.3.1).	

EH	Table 5 E Module: Status of Property Data Element Table	
	e classifications of the status of a property within the Department of Defense (D as. Circle the score that corresponds with the status of property at the MRS.	oD) and
Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. 	5
Scheduled for transfer from DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.	3
DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
provided.	MRS-specific data used in selecting the <i>Status of Property</i> classification in the otes that this MRS is almost entirely privately owned except for the water line v	
owned by the PR DNR and FW	S	

.

F

.

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

Note: If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

Classification	Description	Score
> 500 persons per square mile	 There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. 	5
100–500 persons per square mile	 There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. 	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	1
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the Population Density classification in	the space
Section 2.2.7 of the 2007 SI notes that the population density of the municipality of Culebra is 71.8 persons per mile, as obtained from Census 2000.		er mile, as

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	 There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	5
16 to 25 inhabited structures	• There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	• There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	• There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	• There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

MRS 6 is located within a two-mile radius surrounding the Municipality of Culebra which has just fewer than 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

. .

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term inhabited structure is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4
Agricultural, forestry	• Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
ndustrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

MRS 6 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3

classification in the space provided.

MRS 06 is used for recreational purposes; areas within the vicinity of the site are FWS refuge areas. No cultural resources are documented on the site per the 2007 SI (Section 2.2.6) and the 2006 SSWP.

1. From Tables 1–9, record the data element scores in the **Score** boxes to the right.

etminina the

- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- 3. Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the EHE Module Rating that corresponds to the range selected and record this value in the EHE Module Rating box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

A STATE OF	Source	Score	Value	
Explosive Hazard Factor Data El	ements			
Munitions Type	Table 1	25	35	
Source of Hazard	Table 2	10		
Accessibility Factor Data Elemen	nts			
Location of Munitions	Table 3	5		
Ease of Access	Table 4	10	20	
Status of Property	Table 5	5		
Receptor Factor Data Elements				
Population Density	Table 6	1		
Population Near Hazard	Table 7	5	14:	
Types of Activities/ Structures	Table 8	5	14	
Ecological and /or Cultural Resources	Table 9	3		
EHE	MODULI	E TOTAL	69 [.]	
EHE Module Total	EHE	Module R	ating	
92 to 100		Α		
82 to 91		<u> </u>		
71 to 81		<u> </u>	···	
60 to 70		<u>D</u>		
48 to 59	<u> </u>			
38 to 47	F			
less than 38		G Illuation Pen	dina	
	Evaluation Pending No Longer Required			
Alternative Module Ratings	No Known or Suspected Explosive Hazard			

D

EHE MODULE RATING

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS.
 Note: The terms *CWM/UXO*, *CWM/DMM*, *physical evidence*, and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, explosive configuration either UXO or damaged DMM	 The CWM known or suspected of being present at the MRS is: Explosively configured CWM that are UXO (i.e., CWM/UXO). Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS is: Nonexplosively configured CWM/DMM. Bulk CWM/DMM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942- toxic gas set M-2/E11. 	12
CAIS (chemical agent identification sets)	 Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

provided. There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI

Report). Tables 12-19 have been omitted.

Determini	Table 20 ng the CHE Module Rating			
		Source	Score	Value
DIRECTIONS:	CWM Hazard Factor Data Eleme	nts		
	CWM Configuration	Table 11	0	
 From Tables 11–19, record the data element scores in the 	Sources of CWM	Table 12	0	0
Score boxes to the right.	Accessibility Factor Data Eleme	nts	<u></u>	
2. Add the Score boxes for each	Location of CWM	Table 13	0	
of the three factors and record this number in the Value boxes to the right.	Ease of Access	Table 14	0	0
	Status of Property	Table 15	0	
 Add the three Value boxes and record this number in the CHE 	Receptor Factor Data Elements		1	<u></u>
Module Total box below.	Population Density	Table 16	0	
 Circle the appropriate range for the CHE Module Total below. 	Population Near Hazard	Table 17	0	
	Types of Activities/ Structures	Table 18	0	0
5. Circle the CHE Module Rating that corresponds to the range	Ecological and /or Cultural Resources	Table 19	0	-
selected and record this value in the CHE Module Rating box	CHE MODULE TOTAL 0			0
found at the bottom of the table.	CHE Module Total	CHE Module Rating		ating
Note:	92 to 100		A	
An alternative module rating may be	82 to 91		B	
assigned when a module letter rating is	71 to 81		С	
inappropriate. An alternative module	60 to 70	·	D	
rating is used when more information is	48 to 59		<u> </u>	
needed to score one or more data	38 to 47		F	
elements, contamination at an MRS was	less than 38	Fue	G Iuation Pen	dina
previously addressed, or there is no				
reason to suspect contamination was ever present at an MRS.	Alternative Module Ratings	No Longer Required No Known or Suspected CWN		
	CHE MODULE RATING	Hazard No Known or Suspected CWM Hazard		(M

:

•

	Table 21				
HHE Module: Groundwater Data Element Table					
	Contaminant Hazard Factor (CHF)				
	I the maximum concentrations of all contaminants in the MRS's groundwater and th rrison values (from Appendix B) in the table below. Additional contaminants can be i				
Table 2	27. Calculate and record the ratios for each contaminant by dividing the maximum	ecolded on			
concer	ntration by the comparison value. Determine the CHF by adding the ratios for each				
	er, including additional contaminants recorded on Table 27. Based on the CHF , use the other the termine and record the CHF Value . If there is no known or suspected MC hazard				
	undwater, select the box at the bottom of the table.	u present in			
	rather than total, metais analyses when both are available.				
Contaminant	Maximum Concentration (µg/L) Comparison Value (µg/L)	Ratios			
CHF > 100	H (High)	Contaminant1			
100 > CHF > 2	$CHF = \sum_{n=1}^{\infty}$	ontarninang			
2 > CHF	L (Low)	aminantj			
CONTAMINANT	DIRECTIONS: Record the CHF Value from above in the box to the right				
HAZARD FACTOR (maximum value = H).					
DIRECTIONS, Circle th	Migratory Pathway Factor	ADC.			
Classification	ne value that corresponds most closely to the groundwater migratory pathway at the N Description	Value			
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at,				
	moving toward, or has moved to a point of exposure.				
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident	м			
	or Confined. Information indicates a low potential for contaminant migration from the source via the groundwater to				
Confined	a potential point of exposure (possibly due to geological structures or physical controls).	L			
MIGRATORY	DIRECTIONS: Record the single highest value from above in the box to the				
PATHWAY FACTOR	right (maximum value = H).				
DIRECTIONS: Circle th	Receptor Factor ne value that corresponds most closely to the groundwater receptors at the MRS.				
Classification	Description	Value			
	There is a threatened water supply well downgradient of the source and the groundwater is a current				
Identified	source of drinking water or source of water for other beneficial uses such as irrigation/agriculture (equivalent to Class I or IIA aquifer).	н			
Detential	There is no threatened water supply well downgradient of the source and the groundwater is currently				
Potential	or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).	М			
There is no potentially threatened water supply well downgradient of the source and the groundwater					
l i i i i i i i i i i i i i i i i i i i		L			
Limited	is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).	_			
RECEPTOR	Class IIIA or IIIB aquifer, or where perched aquifer exists only). DIRECTIONS: Record the single highest value from above in the box to the	-			
	Class IIIA or IIIB aquifer, or where perched aquifer exists only).	_			

Per TPP concurrence, no groundwater samples were collected as part of the SI.

	Table	22				
HHE		n Endpoint Data Element Table				
compa Table 2 concer togethe Scale to endpoir	the maximum concentrations of all con rison values (from Appendix B) in the ta 7. Calculate and record the ratios for ea stration by the comparison value . Dete r, including additional contaminants record o determine and record the CHF Value . Ints present in the surface water, select the	ntaminants in the MRS's surface water and the able below. Additional contaminants can be re- ach contaminant by dividing the maximum ermine the CHF by adding the ratios for each orded on Table 27. Based on the CHF , use the If there is no known or suspected MC hazard are box at the bottom of the table.	ecorded on medium ne CHF			
	rather than total, metals analyses when I		Pation			
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios			
CHF Scale	CHF Value	Sum The Ratios				
CHF > 100	H (High)		ntaminanti			
100 > CHF > 2	$H (High) \\ M (Medium) \\ CHF = \sum_{i=1}^{i} [Maximum Concentration of Concentration]$					
2 > CHF	L (Low)	[Comparison Value for Conta	minanij			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right				
DIRECTIONS: Circle th Classification		vay Factor the surface water migratory pathway at the cription	MRS. Value			
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of exposit	that contamination in the surface water is present at,	H			
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.					
Confined		ant migration from the source via the surface water to sence of geological structures or physical controls).	L			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	nest value from above in the box to the +++++++++++++++++++++++++++++++++++				
DIRECTIONS: Circle th Classification		actor the surface water receptors at the MRS. cription	Value			
Identified	Identified receptors have access to surface water to which contamination has moved or can move.					
Potential	Potential for receptors to have access to surface water to which contamination has moved or can M					
Limited	Ititle or no potential for receptors to have access to surface water to which contamination has moved or can move.					
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value					
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard				

.

Per TPP concurrence, no surface water samples were collected as part of the SI

DIRECTIONS: Record values Calcula compa addition record	(from Appendix B) in the table below. Ac ate and record the ratios for each contam rison value . Determine the CHF by add hal contaminants recorded on Table 27.	Endpoint Data Element Table <u>I Factor (CHF)</u> Itaminants in the site's sediment and their c Iditional contaminants can be recorded on T inant by dividing the maximum concentration ing the ratios for each medium together, inc Based on the CHF, use the CHF Scale to d uspected MC hazard for human endpoints p	Table 27. ion by the cluding etermine and				
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios				
CHF Scale	CHF Value	Sum The Ratios					
CHF > 100	H (High)		Contaminant				
100 > CHF > 2	M (Medium) $CHF = \sum_{i=1}^{n} \frac{1}{i} M \lambda_{i}						
2 > CHF	L (Low) [Comparison Value for Contaminant						
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> maximum value = H).	from above in the box to the right					
DIRECTIONS: Circle th	Migratory Pathw	av Factor the sediment migratory pathway at the MRS	S.				
Classification	· · ·	cription	Value				
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expose	that contamination in the sediment is present at,	Н				
Potential		ly beyond the source (i.e., tens of feet), could move ot sufficient to make a determination of Evident or	м				
Confined		ant migration from the source via the sediment to a nee of geological structures or physical controls).	L				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	n <u>est value</u> from above in the box to the = H).					
DIDEOTIONO	Receptor Fa						
DIRECTIONS: Circle th Classification	e value that corresponds most closely to	the sediment receptors at the MRS.	Value				
Identified	Identified receptors have access to sediment to w		H				
Potential	Potential for receptors to have access to sedimer	t to which contamination has moved or can move.	М				
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L				
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value)						
	No Known or Suspected	d Sediment (Human Endpoint) MC Hazard					

Per TPP concurrence, no sediment samples were collected as part of the SI.

· -

Table 24 HHE Module: Surface Water – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table. Note: Use dissolved, rather than total, metals analyses when both are available. Ratios Contaminant Maximum Concentration (µg/L) Comparison Value (µg/L) Sum the Ratios **CHF Scale CHF Value** CHF > 100 H (High) [Maximum Concentration of Contaminant] $CHF = \Sigma$ 100 > CHF > 2 M (Medium) [Comparison Value for Contaminant] 2 > CHF L (Low) DIRECTIONS: Record the CHF Value from above in the box to the right CONTAMINANT HAZARD FACTOR (maximum value = H).**Migratory Pathway Factor** DIRECTIONS: Circle the value that corresponds most closely to the surface water migratory pathway at the MRS. Classification Description Value Analytical data or observable evidence indicates that contamination in the surface water is present at, Н Evident moving toward, or has moved to a point of exposure. Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could Potential move but is not moving appreciably, or information is not sufficient to make a determination of Evident М or Confined Information indicates a low potential for contaminant migration from the source via the surface water Confined to a potential point of exposure (possibly due to presence of geological structures or physical L controls) MIGRATORY DIRECTIONS: Record the single highest value from above in the box to the PATHWAY FACTOR right (maximum value = H). **Receptor Factor** DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS. Classification Description Value Identified receptors have access to surface water to which contamination has moved or can move. Identified Н Potential for receptors to have access to surface water to which contamination has moved or can **Potential** Μ move Little or no potential for receptors to have access to surface water to which contamination has moved Limited L or can move RECEPTOR DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H). FACTOR No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard

Per TPP concurrence, no surface water samples were collected as part of the SI

	Table						
	HHE Module: Sediment – Ecological Endpoint Data Element Table <u>Contaminant Hazard Factor (CHF)</u> DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparisor						
values Calcula compa	(from Appendix B) in the table below. A ate and record the ratios for each conta irison value . Determine the CHF by ac	Additional contaminants can be recorded on T minant by dividing the maximum concentrati Iding the ratios for each medium together, inc	able 27. ion by the luding				
record		Based on the CHF, use the CHF Scale to de suspected MC hazard for ecological endpoint the table.					
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios				
···							
CHF Scale	CHF Value	Sum the Ratios					
CHF > 100	H (High)		aminant]				
100 > CHF > 2	M (Medium)	M (Medium) $CHF = \sum_{ij} [Waxindin Concentration of Contantinant]$					
2 > CHF	L (Low)	[Comparison Value for Contami	nantj				
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H)						
DIRECTIONS: Circle th	Migratory Path ne value that corresponds most closely t	way Factor to the sediment migratory pathway at the MRS					
Classification	Classification Description Va						
Evident	Analytical data or observable evidence indicate moving toward, or has moved to a point of expo	s that contamination in the sediment is present at, osure.	Н				
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.						
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to presence of geological structures or physical controls).						
MIGRATORY PATHWAY FACTOR	MIGRATORY DIRECTIONS: Record the single highest value from above in the box to the						
	Receptor	Factor					
DIRECTIONS: Circle th Classification	DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.						
Identified	Identified receptors have access to sediment to		Value H				
Potential	Potential for receptors to have access to sedime	ent to which contamination has moved or can move.	М				
Limited	Little or no potential for receptors to have acces can move.	ss to sediment to which contamination has moved or	L				
RECEPTOR FACTOR		ahest value from above in the box to the = H).					
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard					

Per TPP concurrence, no sediment samples were collected as part of the SI.

HHE Module: Surface Soil Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio		
Aluminum	31000	77000	0.40		
Copper	130	2800	0.046		
Molybdenum	0.99	380	0.003		
Strontium	270	46000	0.006		
CHF Scale	CHF Value	Sum the Ratios	0.45		
CHF > 100	H (High)	CHF = $\sum_{n=1}^{\infty} Maximum Concentration of C$	ontaminant]		
100 > CHF > 2	M (Medium)	$CHF = \sum_{i} \frac{1}{1}$	minont		
2 > CHF	L (Low)	[Comparison Value for Conta	ammantj		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H		L		
DIRECTIONS: Circle the Classification	De	o the surface soil migratory pathway at the MI scription	RS. Value		
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle the Classification	· · · · · · · · · · · · · · · · · · ·	Factor o the surface soil receptors at the MRS. scription	Value		
Identified	Identified receptors have access to surface so	il to which contamination has moved or can move.	н		
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record the single hi right (maximum value	ghest value from above in the box to the e = H).	L		
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard			

Ambient soil samples collected are used to for metals comparison per TPP concurrence. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score.

Pathways and Receptors are rated low given the lack of contamination detected.

Table 27 HHE Module: Supplemental Contaminant Hazard Factor Table Contaminant Hazard Factor (CHF) DIRECTIONS: Only use this table if there are more than five contaminants present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, there maximum concentrations and their comparison values (from Appendix B) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the companison value. Determine the CHF for each medium on the appropriate media-specific tables. Note Remember Remember Note and an different media.							
Media	Contaminant	Maximum Concentration	Comparison Value	Ratio			
~~~~~~							
		•					
				_			
		l					

#### **Determining the HHE Module Rating**

#### DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the Three-Letter Combination boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A–G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value		Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)						
Surface Water/Human Endpoint (Table 22)	-	-	-		-	-
Sediment/Human Endpoint (Table 23)	-	-	-		-	-
Surface Water/Ecological Endpoint (Table 24)	-	-	-	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	-	-
Sediment/Ecological Endpoint (Table 25)	-	-	-		-	-
Surface Soil (Table 26)	L	L	L		LLL	G

#### **DIRECTIONS** (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

#### Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

## HHE MODULE RATING G

#### HHE Ratings (for reference only)

Combination	Rating		
ННН	A		
ННМ	В		
HHL			
НММ	C		
HML			
МММ	D		
HLL			
MML	E		
MLL	F		
LLL	G		
	Evaluation Pending		
Alternative Module Ratings	No Longer Required		
	No Known or Suspected MC Hazard		

#### Table 29 MRS Priority

**DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.

**Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		А	1		
A	2	В	2	A	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Evaluation Pending Evaluation Pending		Evaluation Pending		
No Longer	Required	No Longer Required		No Longer Required	
No Known or Susp Haza		No Known or Su Haza		No Known or Suspected MC Hazar	
MRS or ALTERNATIVE PRIORITY			5		

**MRSPP** Evaluation

.

**MRS 07** 

١

, ~

.

•

This page intentionally left blank.

.

.

1.

## Table A

#### **MRS Background Information**

**DIRECTIONS:** Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

#### Munitions Response Site Name: MRS 07 – Culebrita Artillery Impact Area

Component: US Navy and US Marines

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 07 Culebrita Artillery Impact Area a (I02PR006807)

#### Date Information Entered/Updated: January 2007/ April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

	✓SI		G FS	🛯 RD
🗆 RA-C		RA-O		

#### Media Evaluated (check all that apply):

	✓ Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
✓Sediment (ecological receptor)	Surface Water (human receptor)

#### **MRS Summary:**

K - 125

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 07, consisting of approximately 375 acres, includes the northern portion of Culebrita as well as Cayo Botella. Culebrita was used as an artillery impact area, torpedo range, and strafing target and Cayo Botella was used as an aerial target.

Description of Pathways for Human and Ecological Receptors:

Soils on the MRS and sediment from a lagoon on the MRS were sampled as these are considered the most likely location for MC. Access to the site is unrestricted.

Description of Receptors (Human and Ecological):

A wildlife refuge is nearby and the area is heavily used for recreational boating.

# Table 1 EHE Module: Munitions Type Data Element Table

**DIRECTIONS:** Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with <u>all</u> munitions types known or suspected to be present at the MRS.

Note: The terms practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20
High explosive (unused)	All DMM containing a high explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are:	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that:	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	30

Munitions used include rockets with suspected WP warheads, flares, and up to 500lb bombs (Section 2.4.1.6 Appendix J of the 2007 SI Report.

#### EHE Module: Source of Hazard Data Element Table

**DIRECTIONS:** Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	<ul> <li>The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas.</li> </ul>	10
Former munitions treatment (i.e., OB/OD) unit	<ul> <li>The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.</li> </ul>	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	<ul> <li>The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.</li> </ul>	5
Former burial pit or other disposal area	<ul> <li>The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.</li> </ul>	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	• The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	<ul> <li>The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.</li> </ul>	2
Former storage or transfer points	<ul> <li>The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).</li> </ul>	2
Former small arms range	<ul> <li>The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	0
SOURCE OF HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

Section 2.4.1.6 and 4.7.1 of the 2007 SI Report.

#### EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS.
 Note: The terms *surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	<ul> <li>Physical evidence indicates that there are UXO or DMM on the surface of the MRS</li> <li>Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS.</li> </ul>	25
Confirmed subsurface, active	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> </ul>	20
Confirmed subsurface, stable	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> </ul>	15
Suspected (physical evidence)	<ul> <li>There is physical evidence (e.g., munitions debris, such fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.</li> </ul>	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	<ul> <li>There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.</li> </ul>	2
Small arms (regardless of location)	<ul> <li>The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	0
LOCATION OF MUNITIONS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	25

MRS 07- Page - 4

#### September 2007 Contract W912DY-04-D-0005

_ . . _

EHE Module: Ease of Access Data Element Table

**DIRECTIONS:** Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	<ul> <li>There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).</li> </ul>	10
Barrier to MRS access is incomplete	<ul> <li>There is a barrier preventing access to parts of the MRS, but not the entire MRS.</li> </ul>	8
Barrier to MRS access is complete but not monitored	There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	<ul> <li>There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.</li> </ul>	0
EASE OF ACCESS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <i>Ease of Access</i> classification in the s	oace
Culebrita beaches are regularly accessed by boat. Although access is obstructed by dense vegetation, it is not restricted. Trails are present across the area. (2007 SI Report Paragraph 5.7.3.1.)		t

.

+

#### EHE Module: Status of Property Data Element Table

**DIRECTIONS:** Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	<ul> <li>The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies.</li> </ul>	5
Scheduled for transfer from DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.	3
DoD control	<ul> <li>The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.</li> </ul>	0
STATUS OF PROPERTY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
DIRECTIONS: Document any i provided.	MRS-specific data used in selecting the Status of Property classification in the	espace
Section 2.4.1.6 of the 2007 SI F	Report notes the MRS is managed by the USFWS.	

#### EHE Module: Population Density Data Element Table

**DIRECTIONS:** Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

**Note:** If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

Classification	Description	Score
> 500 persons per square mile	<ul> <li>There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	5
100–500 persons per square mile	• There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	3
< 100 persons per square mile	<ul> <li>There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	1
POPULATION DENSITY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Population Density</i> classification in the space provided.		
Section 2.2.7 of the 2007 SI notes that the population density of the municipality of Culebra is 71.8 persons per mile, as obtained from Census 2000.		

#### EHE Module: Population Near Hazard Data Element Table

**DIRECTIONS:** Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	<ul> <li>There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	5
16 to 25 inhabited structures	<ul> <li>There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	4
11 to 15 inhabited structures	<ul> <li>There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	3
6 to 10 inhabited structures	<ul> <li>There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	2
1 to 5 inhabited structures	<ul> <li>There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

Several residents within MRS 06 and MRS 05 are within a 2 mile radius of MRS 07. (2007 SI Section 2.2.7 and Table 2.2).

#### EHE Module: Types of Activities/Structures Data Element Table

**DIRECTIONS:** Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term inhabited structure is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.</li> </ul>	5
Parks and recreational areas	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.</li> </ul>	4
Agricultural, forestry	• Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
Industrial or warehousing	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.</li> </ul>	2
No known or recurring activities	<ul> <li>There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.</li> </ul>	1
TYPES OF ACTIVITIES/STRUCTURES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

MRS 7 is located within two miles of the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

#### EHE Module: Ecological and/or Cultural Resources Data Element Table

**DIRECTIONS:** Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	<ul> <li>There are no ecological resources or cultural resources present on the MRS.</li> </ul>	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3

The 2007 SI, Appendix J notes that a FWS refuge area is located on the MRS. A historic lighthouse is located on the southern side of the island, outside of the MRS boundary. (Section 2.2.3 of the 2007 SI Report)

	Determinir	Table 10         ng the EHE Module Rating			
			Source	Score	Value
	TIONS:	Explosive Hazard Factor Data El	ements		
DIREG	TIONS.	Munitions Type	Table 1	30	
	From Tables 1–9, record the data element scores in the	Source of Hazard	Table 2	e 2 10 40	
Score boxes to the right.		Accessibility Factor Data Elemen	nts	<u> </u>	L
	Add the Score boxes for each	Location of Munitions	Table 3	25	
	of the three factors and record this number in the Value boxes	Ease of Access	Table 4	10	40
	to the right.	Status of Property	Table 5	5	1
	Add the three <b>Value</b> boxes and record this number in the <b>EHE</b>	Receptor Factor Data Elements			
	Module Total box below.	Population Density	Table 6	1	
4.	Circle the appropriate range for	Population Near Hazard	Table 7	5	
	the EHE Module Total below.	Types of Activities/ Structures	Table 8	5	14
	Circle the EHE Module Rating	Ecological and /or Cultural Resources	Table 9	3	
	that corresponds to the range selected and record this value in the <b>EHE Module Rating</b> box				94
	found at the bottom of the table.	EHE Module Total	EHE	Module R	lating
Note:		92 to 100		Α	
	ernative module rating may be	82 to 91		<u> </u>	
	ed when a module letter rating is	71 to 81		<u> </u>	
	opriate. An alternative module	60 to 70	D		
-	is used when more information is	48 to 59	E		
	d to score one or more data	38 to 47		F	
	nts, contamination at an MRS was	less than 38	ļ	G	
	usly addressed, or there is no			aluation Pen	
	to suspect contamination was	Alternative Module Ratings		Longer Requ	
ever pr	resent at an MRS.			nown or Sus (plosive <u>H</u> az	
		EHE MODULE RATING		Α	

2

-6

...

### CHE Module: CWM Configuration Data Element Table

**DIRECTIONS:** Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	
CWM, explosive configuration either UXO or damaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Explosively configured CWM that are UXO (i.e., CWM/UXO).</li> <li>Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.</li> </ul>	30
CWM mixed with UXO	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO.</li> </ul>	25
CWM, explosive configuration that are undamaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.</li> </ul>	20
CWM, not explosively configured or CWM, bulk container	The CWM known or suspected of being present at the MRS is: • Nonexplosively configured CWM/DMM. • Bulk CWM/DMM (e.g., ton container).	15
CAIS K941 and CAIS K942	<ul> <li>The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942- toxic gas set M-2/E11.</li> </ul>	12
CAIS (chemical agent identification sets)	<ul> <li>Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.</li> </ul>	10
Evidence of no CWM	• Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the CWM Configuration classifications in the sp provided.

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI Report). Tables 12-19 have been omitted.

Table 20         Determining the CHE Module Rating					
		Source	Score	Value	
DIRECTIONS:	CWM Hazard Factor Data Eleme	nts			
	CWM Configuration	Table 11 0		0	
<ol> <li>From Tables 11–19, record the data element scores in the</li> </ol>	Sources of CWM	Table 12	0	0	
Score boxes to the right.	Accessibility Factor Data Element	nts			
<ol><li>Add the Score boxes for each of the three factors and record</li></ol>	Location of CWM	Table 13	0		
this number in the Value boxes	Ease of Access	Table 14	0	0	
to the right.	Status of Property	Table 15	0		
<ol><li>Add the three Value boxes and record this number in the CHE</li></ol>	L Receptor Pactor Uala Elements				
Module Total box below.	Population Density	Table 16	0		
4. Circle the appropriate range for	Population Near Hazard	Table 17	0		
the CHE Module Total below.	Types of Activities/ Structures	Table 18	0	0	
5. Circle the <b>CHE Module Rating</b> that corresponds to the range	Ecological and /or Cultural Resources	Table 19	0		
selected and record this value in the CHE Module Rating box	CHE	IE MODULE TOTAL 0			
found at the bottom of the table.	CHE Module Total	CHE	E Module Rating		
Neder.	92 to 100		А		
Note:	82 to 91	В			
An alternative module rating may be assigned when a module letter rating is	71 to 81		С		
inappropriate. An alternative module	60 to 70	D			
rating is used when more information is	48 to 59		E		
needed to score one or more data	38 to 47 less than 38	<u> </u>			
elements, contamination at an MRS was		Eve	G aluation Pen	dina	
previously addressed, or there is no	Evaluation P		Longer Req		
reason to suspect contamination was ever present at an MRS.	Alternative Module Ratings		n or Suspe Hazard		
	CHE MODULE RATING		own or cted CW	/M	

٠

#### HHE Module: Groundwater Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	aminant Maximum Concentration (μg/L) Comparison Value (μg/L)			
· · · · · · · · · · · · · · · · · · ·			<u></u>	
CHF > 100	H (High)	$CHF = \sum $ [Maximum Concentration of C	ontaminant]	
100 > CHF > 2	M (Medium)	[Comparison Value for Cont	aminant]	
2 > CHF	L (Low)			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	e from above in the box to the right	1	
	Migratory Pathy	vav Factor		
DIRECTIONS: Circle th		the groundwater migratory pathway at the N	IRS.	
Classification		cription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contami a potential point of exposure (possibly due to ge	nant migration from the source via the groundwater to ological structures or physical controls).	L	
MIGRATORY	DIRECTIONS: Record the single hig	hest value from above in the box to the		
PATHWAY FACTOR				
	Receptor F			
		the groundwater receptors at the MRS.		
Classification		cription	Value	
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture (equivalent to Class I or IIA aquifer).			
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).			
Limited		well downgradient of the source and the groundwater vater and is of limited beneficial use (equivalent to fer exists only).	L	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
	No Kno	own or Suspected Groundwater MC Hazard		

Per TPP concurrence, no groundwater samples were collected as part of the SI.

MRS 07- Page - 14

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

#### HHE Module: Surface Water – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Со	nparison Value (μg/L)	Ratios
<u></u>				
CHF Scale	CHF Value		Sum The Ratios	
CHF > 100	H (High)			
100 > CHF > 2	M (Medium)	$\int CHF = \Sigma_{-}$	[Maximum Concentration of Co	ontaminant]
2 > CHF	L (Low)		[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above	in the box to the right	
DIRECTIONS: Circle t	Migratory Pathy ne value that corresponds most closely to		water migratory pathway at the	MRS.
Classification		cription		Value
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expose		on in the surface water is present at,	н
Potential	Contamination in surface water has moved only a move but is not moving appreciably, or information or Confined.			М
Confined	Information indicates a low potential for contamir a potential point of exposure (possibly due to pre			L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =		om above in the box to the	
	Receptor F			
	he value that corresponds most closely to		water receptors at the MRS.	
Classification	Des Identified receptors have access to surface wate	cription	ningtion has mayod or ean mayo	Value
Identified	·			Η
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access or can move.	s to surface wate	r to which contamination has moved	L
RECEPTOR	DIRECTIONS: Record the single high	nest value fro	m above in the box to	
FACTOR	the right (maximum valu			
	No Known or Suspected Su	urface Water	(Human Endpoint) MC Hazard	

Per TPP concurrence, no surface water samples were collected as part of the SI

#### HHE Module: Sediment – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the site's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	inant Maximum Concentration (mg/kg) Comparison Value (mg/kg)				
Aluminum	17000	77000	0.220		
Barium	16	5300	0.003		
Copper	6.7	2800	0.002		
Iron	1900	23000	0.08		
CHF Scale	CHF Value	Sum The Ratios	0.46		
CHF > 100	H (High)	Maximum Concentration of C	optominantl		
$\frac{HF > 100 \qquad H (High)}{0 > CHF > 2} \qquad M (Medium) \qquad CHF = \sum \frac{[Maximum Concentration of]}{Maximum Concentration of}$		ontaminantj			
2 > CHF	L (Low)	[Comparison Value for Cont	aminant		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right	L		
DIRECTIONS: Circle the Classification	· · ·	vay Factor o the sediment migratory pathway at the MR cription	S. Value		
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving loward, or has moved to a point of exposure.				
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined		nant migration from the source via the sediment to a ence of geological structures or physical controls).	L		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value =	hest value from above in the box to the = H).	L		
	Receptor F				
	ne value that corresponds most closely to				
Classification		cription	Value		
Identified	Identified receptors have access to sediment to		H		
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.				
RECEPTOR FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard			

Background concentrations for sediment are not available. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed contribute to the score. MPF and RF are rated L given the low concentration of contaminants attributable to DoD Activity.

#### HHE Module: Surface Water – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
······································					
			·· <u></u> -·· , • <u>&gt;</u> · ····		
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)				
100 > CHF > 2	M (Medium)	$CHF = \sum $ [Maximum Concentration of C	ontaminantj		
2 > CHF	L (Low)	[Comparison Value for Conta	minant]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right			
Migratory Pathway Factor					
	e value that corresponds most closely to	the surface water migratory pathway at the	MRS. Value		
Classification					
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expos	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure			
Potential	Contamination in surface water has moved only move but is not moving appreciably, or informati or Confined.	slightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident	М		
Confined	Information indicates a low potential for contamir to a potential point of exposure (possibly due to controls).	nant migration from the source via the surface water presence of geological structures or physical	L		
MIGRATORY		hest value from above in the box to the			
PATHWAY FACTOR	right (maximum value	= H).			
DIDECTIONS, Of the 44	Receptor F				
	•	the surface water receptors at the MRS.	Value		
Classification Description			<u>value</u>		
Identified					
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access or can move.	s to surface water to which contamination has moved	L		
RECEPTOR FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
	No Known or Suspected Surfa	ce Water (Ecological Endpoint) MC Hazard			

Per TPP concurrence, no surface water samples were collected as part of the SI

### HHE Module: Sediment – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
Copper	6.7	16	0.42	
Iron	1900	20000	0.095	
Lead	1.9	31	0.06	
Zinc	5.0	120	0.042	
CHF Scale	CHF Value	Sum the Ratios	0.62	
CHF > 100	H (High)	[Maximum Concentration of Con	taminanti	
100 > CHF > 2	M (Medium)			
2 > CHF	L (Low)	[Comparison Value for Contaminant]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H)		L	

### **Migratory Pathway Factor**

**DIRECTIONS:** Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description	Value			
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.				
Potential	Confined.				
onfined Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to presence of geological structures or physical controls).					
MIGRATORY PATHWAY FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L			
	Receptor Factor				
DIRECTIONS: Circle th	he value that corresponds most closely to the sediment receptors at the MRS.				
DIRECTIONS: Circle the Classification		Value			
Classification	he value that corresponds most closely to the sediment receptors at the MRS.	Value H			
Classification Identified	he value that corresponds most closely to the sediment receptors at the MRS. Description				
Classification Identified	he value that corresponds most closely to the sediment receptors at the MRS. Description Identified receptors have access to sediment to which contamination has moved or can move.	Н			
Classification Identified Potential	he value that corresponds most closely to the sediment receptors at the MRS. Description Identified receptors have access to sediment to which contamination has moved or can move. Potential for receptors to have access to sediment to which contamination has moved or can move. Little or no potential for receptors to have access to sediment to which contamination has moved or	Н			

Background concentrations for sediment are not available. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed contribute to the score. Pathways and receptors are rated low given the low level of contamination detected in the sediment.

Table 26								
Table 26         HHE Module: Surface Soil Data Element Table         Contaminant Hazard Factor (CHF)         DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their         comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.								
Contaminant Maximum Concentration (mg/kg) Comparison Value (mg/kg) Ratio								
Barium	480	5300	0.091					
Copper	600	2800	0.21					
Strontium	88	46000	0.0019					
Zinc	240	23000	0.010					
CHF Scale	CHF Value	Sum the Ratios	0.31					
CHF > 100H (High) $CHF = \sum_{i=1}^{i} [Maximum Concentration of Contaminant]100 > CHF > 2M (Medium)$								
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{(2\pi)^{n}} \frac$						
2 > CHF	L (Low)	[Comparison Value for Conta	aminantj					
CONTAMINANT         DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).								
	Migratory Path		, ``					
		o the surface soil migratory pathway at the M						
Classification	and the second secon	scription	Value					
Evident	Analytical data or observable evidence indicate moving toward, or has moved to a point of exp	es that contamination in the surface soil is present at, osure.	н					
Potential		slightly beyond the source (i.e., tens of feet), could ation is not sufficient to make a determination of	М					
Confined	a potential point of exposure (possibly due to	ninant migration from the source via the surface soil to presence of geological structures or physical controls).	L					
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single hi</u> right (maximum value	g <b>hest value</b> from above in the box to the e = H).	L					
DIRECTIONS: Circle the Classification	Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.							
Identified	Identified receptors have access to surface so	il to which contamination has moved or can move.	н					
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can							
Limited	Little or no potential for receptors to have acce or can move.	ess to surface soil to which contamination has moved	L					
RECEPTOR FACTOR	<b>RECEPTOR FACTOR</b> DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).							
No Known or Suspected Sediment (Ecological Endpoint) MC Hazard								

Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score.

Pathway and receptor factors are rated low given the lack of contamination measured in the soil.

		Table 27					
	Conta	nental Contaminant Haz minant Hazard Factor (CHF)					
subble	emental table designed to	e more than five contaminan hold information about contam hich these contaminants are p	mants that do not fit in the	e previous			
tables: Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media specific tables. Note: Remember not to add ratios from different media.							
Media	Contaminant	Maximum Concentration	Comparison Value	Ratio			
Sediment	Lead	1.9	400	0.005			
Sediment	Molybdenum	0.086	380	0.0002			
Sediment	Strontium	7000	46000	0.15			
Sediment	Zinc	5.0	23000	0.0002			
		· · · · · · · · · · · · · · · · · · ·					
<u></u>		[	······				
······································							
				·			
<u></u>							
<u></u>							
			·····				
• • • • • • • • • • • • • • • • • • •							

### **Determining the HHE Module Rating**

### **DIRECTIONS:**

- 1. Record the letter values (H, M, L) for the Contaminant Hazard, Migration Pathway, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the Three-Letter Combination boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A-G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)		Media Rating (A-G)
Groundwater (Table 21)						
Surface Water/Human Endpoint (Table 22)	-	-	-	-		-
Sediment/Human Endpoint (Table 23)	L	L	L	LLL		G
Surface Water/Ecological Endpoint (Table 24)	-	-	-	 -	1.5	-
Sediment/Ecological Endpoint (Table 25)	L	L	L	LLL		G
Surface Soil (Table 26)	L	L	L	LLL		G

### **DIRECTIONS** (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

#### Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

### HHE MODULE RATING

G

### HHE Ratings (for reference only)

Combination	Rating	
ННН	A	
ННМ	В	
HHL		
НММ	- C	
HML		
ммм	D	
HLL	_	
MML	E	
MLL	F	
LLL	G	
	Evaluation Pending	
Alternative Module Ratings	No Longer Required	
	No Known or Suspected MC Hazard	

### **MRS Priority**

- **DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.
- Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		А	1		
Α	2	В	2	Α	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	Е	5	D	5
E	6	F	6	Ε	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Pending	Evaluation	Pending	Evaluation	Pending
No Longer	No Longer Required		No Longer Required		Required
No Known or Susp Haza			No Known or Suspected CWM Hazard No Known or Suspected M		ected MC Hazard
	М	RS or ALTERNAT	IVE PRIORITY	2	

**MRSPP** Evaluation

**MRS 08** 

1

**.** 

This page intentionally left blank.

1

### Table A MRS Background Information

**DIRECTIONS:** Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS 08 – Cayo Norte Impact Area

**Component: US Marines** 

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 08 Cayo Norte Impact Area (I02PR006808)

Date Information Entered/Updated: January 2007/April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

	✓SI		la FS	🗆 RD
RA-C		RA-O		

### Media Evaluated (check all that apply):

Groundwater	✓ Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
✓ Sediment (ecological receptor)	Surface Water (human receptor)

#### MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 08, consisting Cayo Norte, is approximately 306 acres in size. Cayo Norte was leased by the Marines for training however it can not be determined from records whether the site was ever used for training, however was within the impact area of heavy artillery guns and within the safety fan of several aerial targets on the surrounding cays.

Description of Pathways for Human and Ecological Receptors:

Soils on the MRS and sediment from a lagoon on the MRS were sampled as these are considered the most likely location for MC. Access to the site is unrestricted.

Description of Receptors (Human and Ecological):

A wildlife refuge is nearby and the area is heavily used for recreational boating.

# Table 1 EHE Module: Munitions Type Data Element Table

**DIRECTIONS:** Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with <u>all</u> munitions types known or suspected to be present at the MRS.

Note: The terms practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20
High explosive (unused)	All DMM containing a high explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability.	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that: Have not been damaged by burning or detonation Are not detenorated to the point of instability.	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	30

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

Section 4.8.1 and Appendix J of the 2007 SI Report notes the area was leased for artillery training. Munitions noted in the 2005 INPR include 20mm HEI projectiles, and explosives. In addition, munitions used are assumed to be similar to those used at surrounding artillery impact areas. The heavy artillery is rated sensitive as it could potentially contain white phosphorus.

Delivery Order 0008

### EHE Module: Source of Hazard Data Element Table

**DIRECTIONS:** Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	<ul> <li>The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas.</li> </ul>	10
Former munitions treatment (i.e., OB/OD) unit	<ul> <li>The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.</li> </ul>	8
Former practice munitions range	<ul> <li>The MRS is a former military range on which only practice munitions without sensitive fuzes were used.</li> </ul>	6
Former maneuver area	<ul> <li>The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.</li> </ul>	5
Former burial pit or other disposal area	<ul> <li>The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.</li> </ul>	5
Former industrial operating facilities	<ul> <li>The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.</li> </ul>	4
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	<ul> <li>The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.</li> </ul>	2
Former storage or transfer points	<ul> <li>The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).</li> </ul>	2
Former small arms range	<ul> <li>The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	0
SOURCE OF HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

	<u>all</u> locations where munitions are located or suspected of being found at the <i>urface, physical evidence, and historical evidence</i> are defined in Appendix C of the second se	
		51 410
Classification	Description	Score
Confirmed surface	<ul> <li>Physical evidence indicates that there are UXO or DMM on the surface of the MRS</li> <li>Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS.</li> </ul>	5 25 0
Den den verschieft Sonfirmed subsurface, active Multip	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> </ul>	<b>20</b> 0
Confirmed subsurface, stable	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> </ul>	Ote
Suspected (physical evidence)	<ul> <li>There is physical evidence (e.g., munitions debris, such fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.</li> </ul>	0 70
Suspected (historical	There is historical evidence indicating that UXO or DMM may be present at the MRS.	(5)
Subsurface, physical constraint	<ul> <li>There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.</li> </ul>	2
Small arms (regardless of ocation)	<ul> <li>The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	0
OCATION OF MUNITIONS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	5 25

EHE Module: Ease of Access Data Element Table

**DIRECTIONS:** Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

Note: The term barrier is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	<ul> <li>There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).</li> </ul>	10
Barrier to MRS access is incomplete	<ul> <li>There is a barrier preventing access to parts of the MRS, but not the entire MRS.</li> </ul>	8
Barrier to MRS access is complete but not monitored	<ul> <li>There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.</li> </ul>	5
Barrier to MRS access is complete and monitored	<ul> <li>There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.</li> </ul>	0
EASE OF ACCESS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	0
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <i>Ease of Access</i> classification in the s	pace
	I Report notes that the RS is privately owned and is not accessible to the publi espassing is prohibited. Vegetation is very restrictive and there are no trails or	

# Table 5 EHE Module: Status of Property Data Element Table

**DIRECTIONS:** Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	<ul> <li>The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies.</li> </ul>	5
Scheduled for transfer from DoD control	<ul> <li>The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.</li> </ul>	3
DoD control	<ul> <li>The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.</li> </ul>	0
STATUS OF PROPERTY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
DIRECTIONS: Document any I provided.	MRS-specific data used in selecting the <i>Status of Property</i> classification in the	space
Section 2.4.1.7 notes the MRS i	s privately owned.	

.-- -

· · ·

### EHE Module: Population Density Data Element Table

**DIRECTIONS:** Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

Note: If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

Classification	Description	Score
> 500 persons per square mile	<ul> <li>There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	5
100–500 persons per square mile	• There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	3
< 100 persons per square mile	• There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	1
POPULATION DENSITY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <b>Population Density</b> classification in	the space
Section 2.2.7 of the 2007 SI not obtained from Census 2000.	es that the population density of the municipality of Culebra is 71.8 persons pe	er mile, as

### EHE Module: Population Near Hazard Data Element Table

**DIRECTIONS:** Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	• There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	• There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	• There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	<ul> <li>There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	0
POPULATION NEAR HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

MRS 8 is located within a two-mile radius surrounding the Municipality of Culebra which has just fewer than 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

### EHE Module: Types of Activities/Structures Data Element Table

**DIRECTIONS:** Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term inhabited structure is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.</li> </ul>	5
Parks and recreational areas	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.</li> </ul>	4
Agricultural, forestry	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.</li> </ul>	3
Industrial or warehousing	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.</li> </ul>	2
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

**DIRECTIONS:** Document any MRS-specific data used in selecting the **Types of Activities/Structures** classifications in the space provided.

MRS 2 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

~

### EHE Module: Ecological and/or Cultural Resources Data Element Table

**DIRECTIONS:** Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	<ul> <li>There are both ecological and cultural resources present on the MRS.</li> </ul>	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	
ECOLOGICAL AND/OR CULTURAL RESOURCES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3
	/ MRS-specific data used in selecting the <i>Ecological and/or Cultural Resource</i> n the space provided.	25

The MRS is near the USFWS refuges that are utilized by various species of birds. While it is not part of the refuge birds do nest in the area. No cultural resources are reported on the site (2007 SI (Section 2.2.7) and the 2007 SSWP.)

MRS 08 - Page - 10

Determini	Table 10           ng the EHE Module Rating			
		Source	Score	Value
DIRECTIONS:	Explosive Hazard Factor Data El	ements		
	Munitions Type	Table 1	30	40
<ol> <li>From Tables 1–9, record the data element scores in the</li> </ol>	Source of Hazard	Table 2 10		40
Score boxes to the right.	Accessibility Factor Data Eleme	nts		
2. Add the <b>Score</b> boxes for each	Location of Munitions	Table 3	25 5	
of the three factors and record this number in the <b>Value</b> boxes	Ease of Access	Table 4	0	26 10
to the right.	Status of Property	Table 5	5	
<ol><li>Add the three Value boxes and record this number in the EHE</li></ol>	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 6	1	
4. Circle the appropriate range for the EHE Module Total below.	Population Near Hazard	Table 7	5	14
	Types of Activities/ Structures	Table 8	5	14
5. Circle the EHE Module Rating	Ecological and /or Cultural Resources	Table 9	3	
that corresponds to the range selected and record this value in the EHE Module Rating box	EHE MODULE TOTAL			\$4 64
found at the bottom of the table.	EHE Module Total	EHE	EHE Module Rating	
Note:	92 to 100		<u> </u>	
An alternative module rating may be	82 to 91		B	
assigned when a module letter rating is	71 to 81	<u> </u>	<u> </u>	
inappropriate. An alternative module	60 to 70			<u> </u>
rating is used when more information is	48 to 59		<u> </u>	
needed to score one or more data elements, contamination at an MRS was	<u>38 to 47</u>		F	, <u>, , , , , , , , , , , , , , , , </u>
previously addressed, or there is no	less than 38	F	G aluation Dan	
reason to suspect contamination was			aluation Pen	
ever present at an MRS.	Alternative Module Ratings	No Longer Required No Known or Suspected Explosive Hazard		pected
	EHE MODULE RATING	B		>

•

•••

### CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to all CWM configurations known or suspected to be present at the MRS. Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, explosive configuration either UXO or damaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Explosively configured CWM that are UXO (i.e., CWM/UXO).</li> <li>Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.</li> </ul>	30
CWM mixed with UXO	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO.</li> </ul>	25
CWM, explosive configuration that are undamaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.</li> </ul>	20
CWM, not explosively configured or CWM, bulk container	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Nonexplosively configured CWM/DMM.</li> <li>Bulk CWM/DMM (e.g., ton container).</li> </ul>	15
CAIS K941 and CAIS K942	<ul> <li>The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942- toxic gas set M-2/E11.</li> </ul>	12
CAIS (chemical agent identification sets)	<ul> <li>Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.</li> </ul>	10
Evidence of no CWM	<ul> <li>Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.</li> </ul>	0
CWM CONFIGURATION	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

provided.

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI Report). Tables 12-19 have been omitted.

Determinin	Table 20         ng the CHE Module Rating			
		Source	Score	Value
DIRECTIONS:	CWM Hazard Factor Data Element	nts		
	CWM Configuration	Table 11	0	0
<ol> <li>From Tables 11–19, record the data element scores in the</li> </ol>	Sources of CWM	Table 12	0	0
Score boxes to the right.	Accessibility Factor Data Element	nts		
2. Add the <b>Score</b> boxes for each	Location of CWM	Table 13	0	
of the three factors and record this number in the Value boxes	Ease of Access	Table 14	0	0
to the right.	Status of Property	Table 15	0	
<ol><li>Add the three Value boxes and record this number in the CHE</li></ol>	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 16	0	
4. Circle the appropriate range for the CHE Module Total below.	Population Near Hazard	Table 17	0	
	Types of Activities/ Structures	Table 18	0	0
<ol><li>Circle the CHE Module Rating that corresponds to the range</li></ol>	Ecological and /or Cultural Resources	Table 19	0	
selected and record this value in the CHE Module Rating box	CHE MODULE TOTAL 0			0
found at the bottom of the table.	CHE Module Total	CHE Module Rating		ating
Note:	92 to 100		A	
An alternative module rating may be	82 to 91		B	
assigned when a module letter rating is	71 to 81 60 to 70		C D	
inappropriate. An alternative module	48 to 59		<u>D</u>	
rating is used when more information is	38 to 47		F	
needed to score one or more data	less than 38		G	
elements, contamination at an MRS was		Eva	aluation Pen	ding
previously addressed, or there is no reason to suspect contamination was	Alternative Module Ratings		Longer Requ	
ever present at an MRS.		No Known or Suspected CW Hazard		cted CWM
	CHE MODULE RATING	No Known or		(M

	Tab	le 21	
compa Table 2 conce togethe Scale the gro	HHE Module: Groundw <u>Contaminant Has</u> I the maximum concentrations of al arison values (from Appendix B) in th 27. Calculate and record the ratios for intration by the comparison value. If er, including additional contaminants r	<b>ater Data Element Table</b> <u>card Factor (CHF)</u> I contaminants in the MRS's groundwate the table below. Additional contaminants or each contaminant by dividing the max Determine the CHF by adding the ratios recorded on Table 27. Based on the CH ue. If there is no known or suspected N m of the table.	can be recorded on <b>cimum</b> s for each medium IF, use the CHF
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
CHF > 100	H (High)	$CHF = \sum \frac{[Maximum Concentra]}{10}$	tion of Contaminant]
100 > CHF > 2	M (Medium)	[Comparison Value 1	or Contaminant]
2 > CHF	L (Low)	L 1	-
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Va (maximum value = 1	<u>lue</u> from above in the box to the right <del>1</del> ).	
DIRECTIONS: Circle the Classification	he value that corresponds most close	thway Factor ly to the groundwater migratory pathway ription	v at the MRS. Value
Evident	Analytical data or observable evidence indica present at, moving toward, or has moved to a		Н
Potential		ly slightly beyond the source (i.e., tens of feet),	М
Confined	Information indicates a low potential for conta groundwater to a potential point of exposure physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single to the right (maximu	<b>ighest value</b> from above in the box m value = H).	
		or Factor	
	•	y to the groundwater receptors at the M	
Classification		ription	Value
Identified	a current source of drinking water or source of irrigation/agriculture (equivalent to Class I or	IIA aquifer).	Н
Potential	currently or potentially usable for drinking wa I, IIA, or IIB aquifer).	rngradient of the source and the groundwater is ter, irrigation, or agriculture (equivalent to Class	М
Limited	There is no potentially threatened water supp groundwater is not considered a potential sou use (equivalent to Class IIIA or IIIB aquifer, o	urce of drinking water and is of limited beneficial	L
RECEPTOR FACTOR	DIRECTIONS: Record the single to the right (maximu	<b>lighest value</b> from above in the box m value = H).	
	No Known o	or Suspected Groundwater MC Hazard	

Per TPP concurrence, no groundwater samples were collected as part of the SI.

MRS 08 - Page - 14

.

September 2007 Contract W912DY-04-D-0005

_

	Table	22		
HHE	Module: Surface Water – Huma Contaminant Hazard	In Endpoint Data Element Table		
compa Table conce togeth Scale	d the <b>maximum concentrations</b> of all con arison values (from Appendix B) in the ta 27. Calculate and record the <b>ratios</b> for ea intration by the <b>comparison value</b> . Dete er, including additional contaminants reco	ntaminants in the MRS's surface water and the able below. Additional contaminants can be re- ach contaminant by dividing the <b>maximum</b> ermine the <b>CHF</b> by adding the <b>ratios</b> for each orded on Table 27. Based on the <b>CHF</b> , use the If there is no known or suspected MC hazard	ecorded on medium ie CHF	
Note: Use dissolved,	, rather than total, metals analyses when I	ooth are available.		
Contaminant	Maximum Concentration (μg/L)	Comparison Value (µg/L)	Ratios	
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)			
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Conc$	ntaminantj	
2 > CHF	L (Low)	[Comparison Value for Contar	ninant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right		
DIRECTIONS: Circle t		vay Factor the surface water migratory pathway at the N cription	/IRS. Value	
Evident		that contamination in the surface water is present at,	H	
Potential	Contamination in surface water has moved only s	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident		
Confined		ant migration from the source via the surface water to sence of geological structures or physical controls).	Ł	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	nest value from above in the box to the H).		
	Receptor F	actor		
DIRECTIONS: Circle t Classification	he value that corresponds most closely to	the surface water receptors at the MRS. cription	Value	
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	н	
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	м	
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> the right (maximum valu			
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard		

Per TPP concurrence, no surface water samples were collected as part of the SI

..

r

### HHE Module: Sediment – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the site's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
Aluminum	17000	77000	0.220	
Barium	140	5300	0.03	
Copper	19	2800	0.0068	
Iron	39000	23000	1.70	
Lead	5.9	400	0.015	
CHF Scale	CHF Value	Sum The Ratios	1.98	
CHF > 100	H (High)		Contaminant	
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of the second se$		
2 > CHF	L (Low)	[Comparison Value for Con	taminant	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right	L	
DIRECTIONS: Circle th Classification	•	ray Factor the sediment migratory pathway at the MRS cription	S. Value	
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
DIRECTIONS: Circle th Classification	Receptor F e value that corresponds most closely to Dese		Value	
Identified	Identified receptors have access to sediment to which contamination has moved or can move.			
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
	No Known or Suspected	d Sediment (Human Endpoint) MC Hazard		

Background concentrations for sediment are not available. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed contribute to the score. MPF and RF are rated L given the low concentration of contaminants attributable to DoD activities.

MRS 08 - Page - 16

September 2007 Contract W912DY-04-D-0005

### HHE Module: Surface Water - Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	- Maximum Concentration of C	optaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Maximum Concentration of C]}$	Untarininantij
2 > CHF	L (Low)	[Comparison Value for Conta	iminant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	
	Migratory Pathw	vay Factor	
		the surface water migratory pathway at the	MRS.
Classification		cription	Value
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		
Potential	Contamination in surface water has moved only move but is not moving appreciably, or information or Confined.	М	
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).		
MIGRATORY	DIRECTIONS: Record the single high	hest value from above in the box to the	
PATHWAY FACTOR	right (maximum value =	= H).	
DIRECTIONS: Circle th	Receptor F		
Classification	•	the surface water receptors at the MRS.	Value
Identified		r to which contamination has moved or can move.	
			Н
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	м
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value =	<u>hest value</u> from above in the box to the = H).	
	No Known or Suspected Surface	ce Water (Ecological Endpoint) MC Hazard	

Per TPP concurrence, no surface water samples were collected as part of the SI

#### HHE Module: Sediment – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Con	nparison Value (mg/kg)	Ratios
Copper	19	16		1.18
Iron	39000		20000	
Lead	5.9	31		0.19
Mercury	0.011	0.2		0.055
Zinc	61	. 120		0.51
CHF Scale	CHF Value	Sum the Ratios		3.88
CHF > 100	H (High)	[Maximum Concentration of Contami		ntaminant]
100 > CHF > 2	M (Medium)	$\Box$ CHF = $\sum_{n=1}^{\infty}$		
2 > CHF	L (Low)	Comparison Value for Conta		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Valu</u> (maximum value = H)		in the box to the right	М

### Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description	Value			
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to presence of geological structures or physical controls).	L			
MIGRATORY PATHWAY FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	М			
	Receptor Factor				
	ne value that corresponds most closely to the sediment receptors at the MRS.				
Classification	Description	Value			
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н			
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М			
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	L			
RECEPTOR FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	Н			
	No Known or Suspected Sediment (Ecological Endpoint) MC Hazard				

Background concentrations for sediment are not available. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed contribute to the score. MPF is rated M given existing information. RF is rated high given the ecological resources in the area.

MRS 08 - Page - 18 September 2007 Contract W912DY-04-D-0005

#### HHE Module: Surface Soil Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio	
Strontium	51	46000	0.001	
Zinc	90	23000	0.004	
CHF Scale	CHF Value	Sum the Ratios	0.005	
CHF > 100	H (High)	CHF = $\sum_{n=1}^{\infty} Maximum Concentration of C$	ontaminant]	
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2$		
2 > CHF	L (Low)	[Comparison Value for Conta	aminantj	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H)		L	
DIRECTIONS: Circle the Classification	• •	<u>vay Factor</u> ) the surface soil migratory pathway at the MI scription	RS. Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single his right (maximum value	ghest value from above in the box to the = H).	L	
DIRECTIONS: Circle the		the surface soil receptors at the MRS.	Value	
Identified		scription to which contamination has moved or can move.	H	
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record the single his right (maximum value	ghest value from above in the box to the = H).	L	
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard		

Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score.

Pathway and receptor factors are rated low given the lack of contamination measured in the soil.

-

# HHE Module: Supplemental Contaminant Hazard Factor Table

DIRECTIONS: Only use this table if there are more than five contaminants present at the MRS. This is a supplemental table designed to hold information about contaminants present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables: Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from AppendixB) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each media on the appropriate media-specific tables. Note: Remember not to add ratios from different media ;

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Sediment	Mercury	0.011	23	0.0005
Sediment	Molybdenum	0.085	380	0.0002
Sediment	Silver	0.13	3800	0.0003
Sediment	Strontium	30	46000	0.006
Sediment	Zinc	61	23000	0.003

### **Determining the HHE Module Rating**

### **DIRECTIONS:**

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A–G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)					
Surface Water/Human Endpoint (Table 22)	4	-	-	-	-
Sediment/Human Endpoint (Table 23)	L	L	L	LLL	G
Surface Water/Ecological Endpoint (Table 24)	-	-	-	-	-
Sediment/Ecological Endpoint (Table 25)	М	М	н	НММ	F
Surface Soil (Table 26)	L	L	L	LLL	G

#### **DIRECTIONS** (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

#### Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

### HHE MODULE RATING

F

### HHE Ratings (for reference only)

Combination	Rating
ННН	A
ННМ	В
HHL	
НММ	c
HML	
MMM	D
HLL	
MML	E
MLL	F
	G
	Evaluation Pending
Alternative Module Ratings	No Longer Required
	No Known or
	Suspected MC Hazard

### Table 29 MRS Priority

**DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.

**Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
A	2	В	2	A	2
<b>B</b>	3	С	3	В	3
С	4	D.	4	С	4
$\bigcirc$	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending		Evaluation Pending		Evaluation Pending	
No Longer Required		No Longer Required		No Longer Required	
No Known or Suspected Explosive Hazard		No Known or Suspected CWM Hazard		No Known or Suspected MC Hazard	
MRS or ALTERNATIVE PRIORITY				3	5

**MRSPP** Evaluation

**MRS 09** 

.

·

This page intentionally left blank.

.

.

, د

.

•

# Table A MRS Background Information

**DIRECTIONS:** Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS 09 – Soladado Point Mortar and Bombing Areas

**Component: US Marines** 

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 09 Soladado Point Mortar and Bombing Areas (102PR006809)

#### Date Information Entered/Updated: January 2007/ April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

D PA	✓SI	l RI	□ FS	🗆 RD
🗆 RA-C		RA-O		

#### Media Evaluated (check all that apply):

Groundwater	Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

#### MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 09 consists of 328 acres on the very southeast tip of the Southeastern peninsula of Culebra. In 1914, a 5-inch battery was established on Soldado Point. Several training exercises including mortar firing, aerial bombing and strafing were conducted on Soldado point and the bay northwest of Soldado point during the 1930s and 40s. One report mentions 30 and 1000lb. bombs were dropped in this area. Description of Pathways for Human and Ecological Receptors:

Seile on the MDC was compled to this is considered the most likely location for

Soils on the MRS were sampled as this is considered the most likely location for MC. Access to the site is unrestricted. Description of Receptors (Human and Ecological):

The island was used for livestock grazing. The area is managed for recreational use. USFW refuge areas are located in the area.

# Table 1 EHE Module: Munitions Type Data Element Table

**DIRECTIONS:** Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with <u>all</u> munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	assification Description	
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability.	20
High explosive (unused)	All DMM containing a high explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are:	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are detenorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	30

(Sections. 2.4.1.8, and Appendix J of the 2007 SI Report )

#### EHE Module: Source of Hazard Data Element Table

**DIRECTIONS:** Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Scor
Former range	<ul> <li>The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas.</li> </ul>	
Former munitions treatment (i.e., OB/OD) unit	<ul> <li>The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.</li> </ul>	
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	
Former maneuver area	an MRS into this category.	
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	
Former industrial operating facilities	<ul> <li>The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.</li> </ul>	
Former firing points	<ul> <li>The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.</li> </ul>	4
Former missile or air defense artillery emplacements	<ul> <li>The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.</li> </ul>	2
Former storage or transfer points	<ul> <li>The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).</li> </ul>	2
Former small arms range	<ul> <li>The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.].</li> </ul>	
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	
SOURCE OF HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

#### EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS.
 Note: The terms *surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	
Confirmed surface	<ul> <li>Physical evidence indicates that there are UXO or DMM on the surface of the MRS</li> <li>Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS.</li> </ul>	25
Confirmed subsurface, active	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> </ul>	20
Confirmed subsurface, stable	MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.	
Suspected (physical evidence)	<ul> <li>There is physical evidence (e.g., munitions debris, such fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.</li> </ul>	
Suspected (historical evidence)	There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	<ul> <li>There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.</li> </ul>	
Small arms (regardless of ocation)	<ul> <li>The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.].</li> </ul>	
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	
LOCATION OF MUNITIONS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	10

Section 4.9 of the 2007 SI Report states that MD was found on the site.

MRS 09 - Page - 4

EHE Module: Ease of Access Data Element Table

**DIRECTIONS:** Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	There is no barrier preventing access to any part of the MRS (i.e., all	
No barrier		
Barrier to MRS access is incomplete	<ul> <li>There is a barrier preventing access to parts of the MRS, but not the entire MRS.</li> </ul>	8
Barrier to MRS access is complete but not monitored	<ul> <li>There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.</li> </ul>	5
<ul> <li>There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.</li> </ul>		0
EASE OF ACCESS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <i>Ease of Access</i> classification in the s	pace
The beach is publicly accessible Report Paragraph 5.9.3.1).	e. Although vegetation is restrictive, there are no access restrictions to the MR	S (2007 S

#### EHE Module: Status of Property Data Element Table

**DIRECTIONS:** Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	federal agencies.	
Scheduled for transfer from DoD control	<ul> <li>The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.</li> </ul>	3
DoD control	<ul> <li>The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.</li> </ul>	
STATUS OF PROPERTY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the Status of Property classification in the	e space
	ort notes that all of the land acquired by the military on Culebra and the surrour Department of the Interior or transferred to the government of Puerto Rico. The State of St	

are currently managed by USFWS, Puerto Rico Dept. of Natural Resources or the Municipality of Culebra. Section 2.4.1.8 notes the MRS is managed by PR DNR

#### EHE Module: Population Density Data Element Table

**DIRECTIONS:** Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

Note: If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data. There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	5
the MRS is located, based on U.S. Census Bureau data. There are fewer than 100 persons per square mile in the county in	3
* 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	
<b>POPULATION DENSITY DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	
S-specific data used in selecting the <b>Population Density</b> classification in	the space
S	to the right (maximum score = 5). S-specific data used in selecting the <i>Population Density</i> classification in notes that the population density of the municipality of Culebra is 71.8 per

#### EHE Module: Population Near Hazard Data Element Table

**DIRECTIONS:** Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	<ul> <li>the MRS, or both.</li> <li>There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	
16 to 25 inhabited structures		
11 to 15 inhabited structures	There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	• There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	<ul> <li>There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

MRS 9 is located within a two-mile radius surrounding the Municipality of Culebra which has just fewer than 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

# Table 8 EHE Module: Types of Activities/Structures Data Element Table

**DIRECTIONS:** Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

**Note:** The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score	
Residential, educational, commercial, or subsistence	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.</li> </ul>	5	
Parks and recreational areas	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.</li> </ul>	4	
Agricultural, forestry	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.</li> </ul>	3	
<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.</li> </ul>		2	
No known or recurring activities	<ul> <li>There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.</li> </ul>	1	
TYPES OF ACTIVITIES/STRUCTURES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5	

DIRECTIONS: Document any MRS-specific data used in selecting the Types of Activities/Structures classifications the space provided.

MRS 9 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

#### EHE Module: Ecological and/or Cultural Resources Data Element Table

**DIRECTIONS:** Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	• There are both ecological and cultural resources present on the MRS.	
Ecological and cultural resources present		
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
• There are no ecological resources or cultural resources present on the MRS.		0
ECOLOGICAL AND/OR CULTURAL RESOURCES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3
	/ MRS-specific data used in selecting the <i>Ecological and/or Cultural Resource</i> n the space provided.	es
The MRS is in an area that co	ntains USFWS refuges that are utilized by various species of birds. No cultural r	esources

are reported on the site (2007 SI (Section 2.2.6) and the 2007 SSWP.)

Determinit	Table 10           ng the EHE Module Rating			
		Source	Score	Value
DIRECTIONS:	Explosive Hazard Factor Data El	ements		
DIRECTIONS.	Munitions Type	Table 1	30	
<ol> <li>From Tables 1–9, record the data element scores in the</li> </ol>	Source of Hazard	Table 2	10	40
Score boxes to the right.	Accessibility Factor Data Elemen	nts		
2. Add the <b>Score</b> boxes for each	Location of Munitions	Table 3	10	
of the three factors and record this number in the <b>Value</b> boxes	Ease of Access	Table 4	10	25
to the right.	Status of Property	Table 5	5	
<ol><li>Add the three Value boxes and record this number in the EHE</li></ol>	Receptor Factor Data Elements			<u>.</u>
Module Total box below.	Population Density	Table 6	1	
4. Circle the appropriate range for	Population Near Hazard	Table 7	5	
the EHE Module Total below.	Types of Activities/ Structures	Table 8	5	14
5. Circle the EHE Module Rating	Ecological and /or Cultural Resources	Table 9	3	
that corresponds to the range selected and record this value in the EHE Module Rating box	EHE MODULE TOTAL 79		79	
found at the bottom of the table.	EHE Module Total	EHE	Module R	lating
Note:	92 to 100		Α	
An alternative module rating may be	82 to 91	В С		
assigned when a module letter rating is	71 to 81			
inappropriate. An alternative module	60 to 70	<u> </u>	D E	
rating is used when more information is	<u>48 to 59</u>			
needed to score one or more data	<u>38 to 47</u>	F		
elements, contamination at an MRS was previously addressed, or there is no	less than 38		G	
reason to suspect contamination was			aluation Pen	
ever present at an MRS.	Alternative Module Ratings	No Longer Required		
ever present at an wind.		No Known or Suspected Explosive Hazard		
	EHE MODULE RATING		С	

#### CHE Module: CWM Configuration Data Element Table

**DIRECTIONS:** Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score	
CWM, explosive configuration either UXO or damaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Explosively configured CWM that are UXO (i.e., CWM/UXO).</li> <li>Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.</li> </ul>	30	
CWM mixed with UXO	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO.</li> </ul>	25	
CWM, explosive configuration that are undamaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.</li> </ul>	20	
CWM, not explosively configured or CWM, bulk container	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Nonexplosively configured CWM/DMM.</li> <li>Bulk CWM/DMM (e.g., ton container).</li> </ul>	15	
CAIS K941 and CAIS K942	• The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M-2/E11.	12	
CAIS (chemical agent identification sets)	<ul> <li>Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.</li> </ul>	10	
Evidence of no CWM	<ul> <li>Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.</li> </ul>	0	
CWM CONFIGURATION	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0	

DIRECTIONS: Document any MRS-specific data used in selecting the CWM Configuration classifications in the space provided.

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI Report). Tables 12-19 have been omitted.

Determinir	Table 20         ng the CHE Module Rating			
		Source	Score	Value
DIRECTIONS:	CWM Hazard Factor Data Elemen	nts		
	CWM Configuration	Table 11	0	
<ol> <li>From Tables 11–19, record the data element scores in the</li> </ol>	Sources of CWM	Table 12	0	0
Score boxes to the right.	Accessibility Factor Data Element	nts		
2. Add the <b>Score</b> boxes for each	Location of CWM	Table 13	0	
of the three factors and record this number in the <b>Value</b> boxes	Ease of Access	Table 14	0	o
to the right.	Status of Property	Table 15	0	
3. Add the three Value boxes and record this number in the CHE Receptor Factor Data Elements				
Module Total box below.	Population Density	Table 16	0	
4. Circle the appropriate range for	Population Near Hazard	Table 17	0	
the CHE Module Total below.	Types of Activities/ Structures	Table 18	0	0
5. Circle the CHE Module Rating that corresponds to the range	Ecological and /or Cultural Resources	Table 19	0	
selected and record this value in the CHE Module Rating box	CHE MODULE TOTAL 0			
found at the bottom of the table.	CHE Module Total	CHE	Module R	ating
Note:	92 to 100		A	
	82 to 91		B	····
An alternative module rating may be assigned when a module letter rating is	71 to 81		C	
inappropriate. An alternative module	60 to 70		D	
rating is used when more information is	48 to 59		<u> </u>	
needed to score one or more data	38 to 47		F G	<u> </u>
elements, contamination at an MRS was	less than 38			dina
previously addressed, or there is no		Evaluation Pending No Longer Required		
reason to suspect contamination was ever present at an MRS.	Alternative Module Ratings	No Known or Suspected CWI Hazard		
	CHE MODULE RATING	No Known or Suspected CWM Hazard		/M

.

#### HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
· · · · · · · · · · · · · · · · · · ·					
CHF > 100	H (High)	$CHF = \sum $ [Maximum Concentration of C	contaminant]		
100 > CHF > 2	M (Medium)	CHF = 2 [Comparison Value for Cont	aminanti		
2 > CHF	L (Low)		arninaritj		
CONTAMINANT	DIRECTIONS: Record the CHF Value	e from above in the box to the right			
HAZARD FACTOR	(maximum value = H).	_			
	Migratory Pathy				
	· · ·	the groundwater migratory pathway at the N			
Classification	Description Value				
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).				
Receptor Factor					
		the groundwater receptors at the MRS.			
Classification	Description Val				
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture H (equivalent to Class I or IIA aquifer).				
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).				
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).				
RECEPTOR FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
	No Kno	own or Suspected Groundwater MC Hazard			

Per TPP concurrence, no groundwater samples were collected as part of the SI.

HHE Module:	Surface Water – Human Endpoint Data Element Table
	Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100	H (High)				
100 > CHF > 2	M (Medium)	$CHF = \sum $ [Maximum Concentration of C	ontaminantj		
2 > CHF	L (Low)	[Comparison Value for Conta	iminańt]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right			
	Migratory Pathy				
		the surface water migratory pathway at the			
Classification		cription	Value		
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY	DIRECTIONS: Record the single highest value from above in the box to the				
PATHWAY FACTOR right (maximum value = H).					
DIDECTIONS: Circle #	Receptor F				
Classification		the surface water receptors at the MRS.	Value		
Identified	I identified recenters have access to surface water to which contamination has moved as each mayo				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard			

Per TPP concurrence, no surface water samples were collected as part of the SI

HHE Module:       Sediment – Human Endpoint Data Element Table         Contaminant Hazard Factor (CHF)         DIRECTIONS:         Record the maximum concentrations of all contaminants in the site's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the sediment, select the box at the bottom of the table.				
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)	$HF = \sum \frac{[Maximum Concentration of Concentration]}{[Maximum Concentration]}$	itaminant]	
100 > CHF > 2 2 > CHF	ICompanies Value for Conteminant			
HAZARD FACTOR	<b>DIRECTIONS:</b> Record <u>the CHF Value</u> from above in the box to the right maximum value = H).			
DIRECTIONS: Circle th Classification	•	a <u>y Factor</u> the sediment migratory pathway at the MRS ri <b>ption</b>	S. Value	
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or M Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the			
DIRECTIONS: Circle th Classification	Receptor Factor           DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.           Classification         Description			
Identified	Identified receptors have access to sediment to which contamination has moved or can move.			
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.			
RECEPTOR         DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).				
No Known or Suspected Sediment (Human Endpoint) MC Hazard				

Per TPP concurrence no sediment samples were collected as part of the SI.

MRS 09 - Page - 16

September 2007 Contract W912DY-04-D-0005

- .

.

#### HHE Module: Surface Water – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (μg/L) Comparison Value (μg/L)		Ratios		
			·		
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	- Maximum Concentration of Co	ontaminanti		
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of Concentration]}{[Maximum Concentration]}$			
2 > CHF	L (Low)	[Comparison Value for Conta	minant]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	e from above in the box to the right			
	Migratory Pathy				
		the surface water migratory pathway at the	MRS. Value		
Classification					
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY	DIRECTIONS: Record the single highest value from above in the box to the				
PATHWAY FACTOR	right (maximum value ≍ H).				
	Receptor F				
DIRECTIONS: Circle th Classification	• •	the surface water receptors at the MRS.	Value		
Identified	Description           Identified receptors have access to surface water to which contamination has moved or can move.				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR         DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).					
	No Known or Suspected Surfa	ce Water (Ecological Endpoint) MC Hazard			

Per TPP concurrence, no surface water samples were collected as part of the SI

,

Table 25						
	HHE Module: Sediment – Ecological Endpoint Data Element Table <u>Contaminant Hazard Factor (CHF)</u> DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison					
Calcula c <b>ompa</b>	ite and record the ratios for each conta rison value. Determine the CHF by ac	Additional contaminants can be recorded on T minant by dividing the <b>maximum concentrat</b> Iding the <b>ratios</b> for each medium together, inc	on by the luding			
record		Based on the CHF, use the CHF Scale to de suspected MC hazard for ecological endpoint ne table.				
Contaminant	Maximum Concentration (mg/kg) Comparison Value (mg/kg) Ratios					
	· · · · · · · · · · · · · · · · · · ·					
CHF Scale	CHF Value	Sum the Ratios				
CHF > 100	H (High)	CHF = $\sum $ [Maximum Concentration of Cont	aminant]			
100 > CHF > 2	Comparison Value for Contemin and					
2 > CHF						
CONTAMINANT HAZARD FACTOR	<b>DIRECTIONS:</b> Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).					
DIRECTIONS: Circle th	Migratory Path ne value that corresponds most closely	way Factor to the sediment migratory pathway at the MRS	5.			
Classification	Description Value					
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.					
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or M Confined.					
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to presence of geological structures or physical controls).					
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single his right (maximum value	<b>thest value</b> from above in the box to the = H).				
	Receptor	Factor				
DIRECTIONS: Circle th Classification	cle the value that corresponds most closely to the sediment receptors at the MRS. Description Value					
Identified	Identified receptors have access to sediment to which contamination has moved or can move.					
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.					
Limited	Little or no potential for receptors to have acces can move.	ss to sediment to which contamination has moved or	L			
RECEPTOR FACTOR	RECEPTOR DIRECTIONS: Record the single highest value from above in the box to the					
No Known or Suspected Sediment (Ecological Endpoint) MC Hazard						

Per TPP concurrence, no sediment samples were collected as part of the SI.

#### Table 26 HHE Module: Surface Soil Data Element Table **Contaminant Hazard Factor (CHF)** DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table. Contaminant Maximum Concentration (mg/kg) Comparison Value (mg/kg) Ratio 34000 77000 0.44 Aluminum 0.063 Chromium 19 300 Strontium 81 46000 0.002 **CHF** Scale **CHF** Value Sum the Ratios 0.50 **CHF** = $\sum_{i=1}^{n}$ [Maximum Concentration of Contaminant] H (High) 100 > CHF > 2 M (Medium) [Comparison Value for Contaminant] L (Low) CONTAMINANT DIRECTIONS: Record the CHF Value from above in the box to the right L HAZARD FACTOR (maximum value = H). **Migratory Pathway Factor** DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS. Classification Description Value

Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.	н
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	М
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to presence of geological structures or physical controls).	Ĺ
MIGRATORY PATHWAY FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L
DIRECTIONS: Circle the Classification	Receptor Factor e value that corresponds most closely to the surface soil receptors at the MRS. Description	Value
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.	н
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.	M
		141
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.	L
Limited RECEPTOR FACTOR		L L

Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score.

Pathway and receptor factors are rated low given the lack of contamination measured in the soil.

MRS 09 - Page - 19

September 2007 Contract W912DY-04-D-0005

CHF > 100

2 > CHF

Table 27         HHE Module: Supplemental Contaminant Hazard Factor Table <u>Contaminant Hazard Factor (CHF)</u> DIRECTIONS: Only use this table if there are more than five contaminants present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.         Note: Remember not to add ratios from different media.				
Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
The second s			Southenson Adine	TULIV
		· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·				
	<u> </u>			
	<u> </u>			
				····
<u></u>				
· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·				——————————————————————————————————————

#### **Determining the HHE Module Rating**

#### **DIRECTIONS:**

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A–G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)		Media Rating (A-G)
Groundwater (Table 21)					1 4 4 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	
Surface Water/Human Endpoint (Table 22)	•	-	-	-		-
Sediment/Human Endpoint (Table 23)	-	-	-	-		-
Surface Water/Ecological Endpoint (Table 24)	-	-	-	-		-
Sediment/Ecological Endpoint (Table 25)	-	-	-	 -		-
Surface Soil (Table 26)	L	L	L	LLL		G

#### **DIRECTIONS (cont.):**

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

#### Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

#### HHE MODULE RATING

#### HHE Ratings (for reference only)

G

Combination	Rating	
ННН	A	
ННМ	В	
HHL		
НММ	С	
HML	_	
МММ	D	
HLL		
MML	E	
MLL	F	
LUL	G	
	Evaluation Pending	
Alternative Module Ratings	No Longer Required	
	No Known or Suspected MC Hazard	

#### Table 29 MRS Priority

**DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.

**Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		A	1		
Α	2	В	2	A	2
B	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	Е	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Pending	Evaluation	Pending	Evaluation	Pending
No Longer F	Required	No Longer F	Required	No Longer	Required
No Known or Suspected Explosive Hazard		No Known or Suspected CWM Hazard No Known or Susp		ected MC Hazard	
	M	RS or ALTERNAT	IVE PRIORITY	4	

MRS 09 - Page - 22

**MRSPP** Evaluation

.

**MRS 10** 

.

This page intentionally left blank.

.

#### Table A MRS Background Information

**DIRECTIONS:** Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

#### Munitions Response Site Name: MRS 10 - Defensive Firing Area #1

**Component: US Marines and US Navy** 

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 10 Defensive Firing Area #1 (I02PR006810)

#### Date Information Entered/Updated: January 2007/April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

	✓SI	🗆 RI	🗅 FS	
RA-C		RA-O		

#### Media Evaluated (check all that apply):

Groundwater	Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

#### MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 10 consists of 547 acres on the southwest peninsula of Culebra, south of the town of Dewey. Marines conducted amphibious landing and ground maneuver training on the beaches and hills in this area from the 1920s through the 1940s. MRS 10 has many residents and business. Most of the development is near the town of Dewey on the north end of the site; however, houses are scattered throughout this area. This MRS is almost entirely privately owned except for municipality lands such as the police and fire stations

Description of Pathways for Human and Ecological Receptors:

Soils on the MRS were sampled as this is considered the most likely location for MC. Access to the site is unrestricted. Description of Receptors (Human and Ecological):

The island was used for livestock grazing. The area is managed for recreational use. USFW refuge areas are located in the area.

# Table 1 EHE Module: Munitions Type Data Element Table

**DIRECTIONS:** Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with <u>all</u> munitions types known or suspected to be present at the MRS.

Note: The terms practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20
High explosive (unused)	All DMM containing a high explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are:	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	30

The area was used for ground maneuvers and amphibious training. Mortars may have been dropped on the beach from higher ground (Section 2.4.1.9 and Appendix J of the 2007 SI Report) Mortars are rated sensitive as they could have potentially contained white phosphorus.

#### EHE Module: Source of Hazard Data Element Table

**DIRECTIONS:** Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	<ul> <li>The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas.</li> </ul>	10
Former munitions treatment (i.e., OB/OD) unit	<ul> <li>The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.</li> </ul>	8
Former practice munitions	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	<ul> <li>The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.</li> </ul>	5
Former burial pit or other disposal area	• The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	<ul> <li>The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.</li> </ul>	4
Former firing points	<ul> <li>The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.</li> </ul>	4
Former missile or air defense artillery emplacements	<ul> <li>The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.</li> </ul>	2
Former storage or transfer points	<ul> <li>The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).</li> </ul>	2
Former small arms range	<ul> <li>The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	0
SOURCE OF HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

#### EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS.
 Note: The terms *surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	<ul> <li>Physical evidence indicates that there are UXO or DMM on the surface of the MRS</li> <li>Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS.</li> </ul>	25
Confirmed subsurface, active	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> </ul>	20
Confirmed subsurface, stable	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> </ul>	15
Suspected (physical svidence)	<ul> <li>There is physical evidence (e.g., munitions debris, such fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.</li> </ul>	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	<ul> <li>There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.</li> </ul>	2
Small arms (regardless of ocation)	<ul> <li>The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	0
OCATION OF MUNITIONS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	5

space provided. Section 4.10 of the 2007 SI Report states that there is no record of any MEC or MD being discovered on the site.

MRS 10 - Page - 4

#### EHE Module: Ease of Access Data Element Table

**DIRECTIONS:** Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	<ul> <li>There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).</li> </ul>	10
Barrier to MRS access is incomplete	<ul> <li>There is a barrier preventing access to parts of the MRS, but not the entire MRS.</li> </ul>	8
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	<ul> <li>There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.</li> </ul>	0
EASE OF ACCESS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <i>Ease of Access</i> classification in the s	pace
There are no fences or physical Report paragraph 5.10.3.1)	barriers to the site, although vegetation impedes travel off established trails (2	007 SI

# Table 5 EHE Module: Status of Property Data Element Table

**DIRECTIONS:** Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	<ul> <li>The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies.</li> </ul>	5
Scheduled for transfer from DoD control	The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.	3
DoD control	<ul> <li>The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.</li> </ul>	0
STATUS OF PROPERTY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the Status of Property classification in the	e space
Section 2.4.1.9 of the 2007 SI R	Report notes the MRS is privately owned.	

#### EHE Module: Population Density Data Element Table

**DIRECTIONS:** Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

**Note:** If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

Classification	Description	Score
> 500 persons per square mile	<ul> <li>There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	5
100–500 persons per square mile	There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	3
< 100 persons per square mile	<ul> <li>There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	1
POPULATION DENSITY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <b>Population Density</b> classification in	the space
Section 2.2.7 of the 2007 SI not obtained from Census 2000.	es that the population density of the municipality of Culebra is 71.8 persons pe	er mile, as

#### EHE Module: Population Near Hazard Data Element Table

**DIRECTIONS:** Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	<ul> <li>There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	5
16 to 25 inhabited structures	• There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	• There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	• There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	• There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

**DIRECTIONS:** Document any MRS-specific data used in selecting the **Population Near Hazard** classification in the space provided.

MRS 10 is located within a two-mile radius surrounding the Municipality of Culebra which has just fewer than 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

#### EHE Module: Types of Activities/Structures Data Element Table

**DIRECTIONS:** Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term inhabited structure is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.</li> </ul>	5
Parks and recreational areas	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.</li> </ul>	4
Agricultural, forestry	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
ndustrial or warehousing	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.</li> </ul>	2
No known or recurring activities	• There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

MRS 2 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

#### EHE Module: Ecological and/or Cultural Resources Data Element Table

**DIRECTIONS:** Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	<ul> <li>There are no ecological resources or cultural resources present on the MRS.</li> </ul>	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3

classification in the space provided.

The MRS is in an area that contains USFWS refuges that are utilized by various species of birds. No cultural resources are reported on the site (2007 SI Section 2.2.7) and the 2006 SSWP.

Determini	Table 10         ng the EHE Module Rating			
		Source	Score	Value
DIRECTIONS:	Explosive Hazard Factor Data E	lements		
	Munitions Type	Table 1	30	4.0
<ol> <li>From Tables 1–9, record the data element scores in the</li> </ol>	Source of Hazard	Table 2	10	40
Score boxes to the right.	Accessibility Factor Data Eleme	nts		1
2. Add the Score boxes for each	Location of Munitions	Table 3	5	
of the three factors and record this number in the <b>Value</b> boxes to the right.	Ease of Access	Table 4	10	20
	Status of Property	Table 5	5	
<ol><li>Add the three Value boxes and record this number in the EHE</li></ol>	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 6	1	
<ol> <li>Circle the appropriate range for the EHE Module Total below.</li> </ol>	Population Near Hazard	Table 7	5	
	Types of Activities/ Structures	Table 8	5	14
5. Circle the EHE Module Rating	Ecological and /or Cultural Resources	Table 9	3	
that corresponds to the range selected and record this value in the <b>EHE Module Rating</b> box	EHE MODULE TOTAL 74			74
found at the bottom of the table.	EHE Module Total	EHE	Module R	ating
Note:	92 to 100		A	
An alternative module rating may be	82 to 91		B	
assigned when a module letter rating is	71 to 81		С	
nappropriate. An alternative module	<u>60 to 70</u>		D	
rating is used when more information is	48 to 59		<u> </u>	
needed to score one or more data	<u>38 to 47</u>		F	
elements, contamination at an MRS was previously addressed, or there is no	less than 38		G	
reason to suspect contamination was			aluation Pen	
ever present at an MRS.	Alternative Module Ratings		Longer Req	
		No Known or Suspecter Explosive Hazard		•
	EHE MODULE RATING		С	

7

4 17

### CHE Module: CWM Configuration Data Element Table

**DIRECTIONS:** Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS. Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, explosive configuration either UXO or damaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Explosively configured CWM that are UXO (i.e., CWM/UXO).</li> <li>Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.</li> </ul>	30
CWM mixed with UXO	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO.</li> </ul>	25
CWM, explosive configuration that are undamaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.</li> </ul>	20
CWM, not explosively configured or CWM, bulk container	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Nonexplosively configured CWM/DMM.</li> <li>Bulk CWM/DMM (e.g., ton container).</li> </ul>	15
CAIS K941 and CAIS K942	<ul> <li>The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942- toxic gas set M-2/E11.</li> </ul>	12
CAIS (chemical agent identification sets)	<ul> <li>Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.</li> </ul>	10
Evidence of no CWM	<ul> <li>Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.</li> </ul>	0
CWM CONFIGURATION	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

**DIRECTIONS:** Document any MRS-specific data used in selecting the *CWM Configuration* classifications in the space provided.

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI Report). Tables 12-19 have been omitted.

MRS 10 - Page - 12 September 2007 Contract W912DY-04-D-0005

Determinir	Table 20         ng the CHE Module Rating			——————————————————————————————————————
		Source	Score	Value
DIRECTIONS:	CWM Hazard Factor Data Elemen	nts		
	CWM Configuration	Table 11	0	<u>_</u>
<ol> <li>From Tables 11–19, record the data element scores in the</li> </ol>	Sources of CWM	Table 12	0	0
Score boxes to the right.	Accessibility Factor Data Eleme	nts		
2. Add the <b>Score</b> boxes for each	Location of CWM	Table 13	0	
of the three factors and record this number in the <b>Value</b> boxes to the right.	Ease of Access	Table 14	0	0
	Status of Property	Table 15	0	
<ol> <li>Add the three Value boxes and record this number in the CHE</li> </ol>	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 16	0	
4. Circle the appropriate range for	Population Near Hazard	Table 17	0	
the CHE Module Total below.	Types of Activities/ Structures	Table 18	0	0
5. Circle the <b>CHE Module Rating</b> that corresponds to the range	Ecological and /or Cultural Resources	Table 19	0	
selected and record this value in the CHE Module Rating box	CHE MODULE TOTAL 0			0
found at the bottom of the table.	CHE Module Total	CHE Module Ratin		ating
Note:	92 to 100		Α	······
	82 to 91	B C		
An alternative module rating may be assigned when a module letter rating is	71 to 81			
inappropriate. An alternative module	60 to 70 48 to 59	·	D 	
rating is used when more information is	38 to 47	[	<u>E</u> F	
needed to score one or more data	less than 38		G	
elements, contamination at an MRS was		Eva	aluation Pen	ding
previously addressed, or there is no	Alternative Module Ratings	No Longer Required		
reason to suspect contamination was ever present at an MRS.	Alternative Module Matings	No Known or Suspected CWN Hazard		
	CHE MODULE RATING	No Known or		

compa Table 2 concer togethe Scale to the grou	rison values (from Appendix B) in the ta 7. Calculate and record the ratios for ex intration by the comparison value. Detern r, including additional contaminants record o determine and record the CHF Value. Undwater, select the box at the bottom of rather than total, metals analyses when I	<b>Pr Data Element Table</b> <u>I Factor (CHF)</u> Intaminants in the MRS's groundwater and the ble below. Additional contaminants can be re ach contaminant by dividing the <b>maximum</b> ermine the CHF by adding the <b>ratios</b> for each rded on Table 27. Based on the CHF, use the If there is no known or suspected MC hazard the table.	ecorded on n medium ne CHF	
Contaminant	Maximum Concentration (µg/L)	Comparison Value (μg/L)	Ratios	
CHF > 100	H (High)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Maximum Concentration of C]}$	ontaminant]	
100 > CHF > 2	Comparison Value for Contaminan			
2 > CHF	L (Low)			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right		
DIRECTIONS: Circle th Classification		v <u>ay Factor</u> the groundwater migratory pathway at the M cription	IRS. Value	
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in groundwater has moved only s	lightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident	М	
Confined	Information indicates a low potential for contamin a potential point of exposure (possibly due to get	ant migration from the source via the groundwater to ological structures or physical controls).	L	
MIGRATORY PATHWAY FACTOR				
DIRECTIONS: Circle th Classification	-	actor the groundwater receptors at the MRS. cription	Value	
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture H (equivalent to Class I or IIA aquifer).			
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB M aquifer).			
Limited		vell downgradient of the source and the groundwater vater and is of limited beneficial use (equivalent to er exists only).	L	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single hig</u> right (maximum value =	h <u>est value</u> from above in the box to the = H).		
	No Kno	wn or Suspected Groundwater MC Hazard		

Per TPP concurrence, no groundwater samples were collected as part of the SI.

.

#### Table 22 HHE Module: Surface Water - Human Endpoint Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the surface water, select the box at the bottom of the table. Note: Use dissolved, rather than total, metals analyses when both are available. Contaminant Maximum Concentration (ug/L) Comparison Value (µg/L) Ratios **CHF** Scale **CHF Value** Sum The Ratios CHF > 100 H (High) [Maximum Concentration of Contaminant] $CHF = \sum_{n}$ 100 > CHF > 2 M (Medium) [Comparison Value for Contaminant] 2 > CHEL (Low) CONTAMINANT DIRECTIONS: Record the CHF Value from above in the box to the right **HAZARD FACTOR** (maximum value = H). **Migratory Pathway Factor** DIRECTIONS: Circle the value that corresponds most closely to the surface water migratory pathway at the MRS. Classification Description Value Analytical data or observable evidence indicates that contamination in the surface water is present at, Evident н moving toward, or has moved to a point of exposure. Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could Potential move but is not moving appreciably, or information is not sufficient to make a determination of Evident М or Confined. Information indicates a low potential for contaminant migration from the source via the surface water to L Confined a potential point of exposure (possibly due to presence of geological structures or physical controls). MIGRATORY DIRECTIONS: Record the single highest value from above in the box to the **PATHWAY FACTOR** right (maximum value = H). **Receptor Factor DIRECTIONS:** Circle the value that corresponds most closely to the surface water receptors at the MRS. Description Value Classification Identified receptors have access to surface water to which contamination has moved or can move. Identified н Potential for receptors to have access to surface water to which contamination has moved or can Μ Potential move. Little or no potential for receptors to have access to surface water to which contamination has moved L Limited or can move. DIRECTIONS: Record the single highest value from above in the box to RECEPTOR the right (maximum value = H). FACTOR No Known or Suspected Surface Water (Human Endpoint) MC Hazard

Per TPP concurrence, no surface water samples were collected as part of the SI

DIRECTIONS: Record values Calcula compa additior record	(from Appendix B) in the table below. Add ate and record the <b>ratios</b> for each contamir <b>trison value</b> . Determine the <b>CHF</b> by addin nal contaminants recorded on Table 27. B	Endpoint Data Element Table Factor (CHF) taminants in the site's sediment and their con- ditional contaminants can be recorded on T nant by dividing the maximum concentration ing the ratios for each medium together, inclusion based on the CHF, use the CHF Scale to define spected MC hazard for human endpoints p	able 27. ion by the cluding etermine and
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	$HF = \sum \frac{[Maximum Concentration of Concentration]}{[Maximum Concentration]}$	taminant]
100 > CHF > 2	M (Medium) CH	$HF = \sum_{\text{[Comparison Value for Contam]}} [Comparison Value for Contam]$	lanniant,
2 > CHF	L (Low)	[Comparison value for Contain	Inant
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value f maximum value = H).	from above in the box to the right	
DIRECTIONS: Circle th Classification		ay Factor the sediment migratory pathway at the MRS ription	S. Value
Evident	Analytical data or observable evidence indicates th moving toward, or has moved to a point of exposur	nat contamination in the sediment is present at,	H
Potential		y beyond the source (i.e., tens of feet), could move	М
Confined	Information indicates a low potential for contaminar potential point of exposure (possibly due to present		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single higher right (maximum value = 1		
	Receptor Fac		
	ne value that corresponds most closely to the	·	<b>.</b>
Classification	Identified receptors have access to sediment to wh	ription	Value
Identified			H
Potential	Potential for receptors to have access to sediment		M
Limited	Little or no potential for receptors to have access to can move.	o sediment to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record the single higher the right (maximum value		Н
	No Known or Suspected	Sediment (Human Endpoint) MC Hazard	

Per TPP concurrence no sediment samples were collected as part of the SI.

£

#### HHE Module: Surface Water – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (μg/L) Comparison Value (μg/L)					
CHF Scale	CHF Value	Sum the Ratios				
CHF > 100	H (High)					
100 > CHF > 2	M (Medium)	$CHF = \sum - [Maximum Concentration of Concentration]$	ontaminantj			
2 > CHF	L (Low)	[Comparison Value for Conta	minant]			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right				
	Migratory Pathw	vay Factor				
		the surface water migratory pathway at the	MRS. Value			
Classification	Description					
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.					
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.					
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).					
MIGRATORY	DIRECTIONS: Record the single hig	hest value from above in the box to the				
PATHWAY FACTOR						
DIRECTIONS: Circle th	Receptor F	actor the surface water receptors at the MRS.				
Classification	-	cription	Value			
Identified	Identified receptors have access to surface wate	r to which contamination has moved or can move.	Н			
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.					
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.					
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single hig</u> right (maximum value =	hest value from above in the box to the ≠ H).				
	No Known or Suspected Surfa	ce Water (Ecological Endpoint) MC Hazard				

Per TPP concurrence, no surface water samples were collected as part of the SI

DIRECTIONS: Record values Calcula compa addition record	Contaminant Haza the maximum concentrations of all c (from Appendix B) in the table below. A te and record the ratios for each conta rison value. Determine the CHF by ac nal contaminants recorded on Table 27.	al Endpoint Data Element Table rd Factor (CHF) ontaminants in the MRS's sediment and their Additional contaminants can be recorded on T minant by dividing the maximum concentration Iding the ratios for each medium together, inco Based on the CHF, use the CHF Scale to des suspected MC hazard for ecological endpoint	able 27. ion by the luding termine and					
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios					
0.15.0		0.41.5 8-41.5						
CHF Scale	CHF Value	Sum the Ratios						
CHF > 100 100 > CHF > 2	$\frac{H (High)}{M (Medium)} \qquad CHF = \sum \frac{[Maximum Concentration of Contaminant]}{[Maximum Concentration of Contaminant]}$							
2 > CHF	L (Low)	[Comparison Value for Contami	nant]					
CONTAMINANT	DIRECTIONS: Record the CHF Value	e from above in the box to the right						
HAZARD FACTOR								
DIRECTIONS: Circle th	Migratory Path ne value that corresponds most closely t	way Factor to the sediment migratory pathway at the MRS	5.					
Classification		scription	Value					
Evident	Analytical data or observable evidence indicate moving toward, or has moved to a point of expo	s that contamination in the sediment is present at, osure.	Н					
Potential	Contamination in sediment has moved only slig	hlly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or	М					
Confined	Information indicates a low potential for contam potential point of exposure (possibly due to pre-	inant migration from the source via the sediment to a sence of geological structures or physical controls).	L					
MIGRATORY PATHWAY FACTOR								
	Receptor	Factor						
	ne value that corresponds most closely t							
Classification	De Identified receptors have access to sediment to	scription	Value					
Identified	•		H					
Potential	Potential for receptors to have access to sedim	ent to which contamination has moved or can move.	М					
Limited	Little or no potential for receptors to have acces can move.	ss to sediment to which contamination has moved or	L					
RECEPTOR FACTOR	DIRECTIONS: Record the single his right (maximum value	<b>ahest value</b> from above in the box to the = H).						
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard						

Per TPP concurrence, no sediment samples were collected as part of the SI.

#### HHE Module: Surface Soil Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Aluminum       44000       77000       0.57         Copper       230       2800       0.082         Iron       84000       23000       3.65         Strontium       100       46000       0.0022         Zinc       130       23000       0.0052         CHF > 100       H (High)       0.0025       0.0056         CHF > 100       H (High)       0.0056       4.31         CHF > 100       H (High)       CHF > 100       CHF > 100       0.0056         CONTAMINANT       L (Low)       CHF > 100       Contaminant       Contaminant         CONTAMINANT       DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.       Classification       Value         Potential       Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved on y slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.       M         Potential       Contamination in surface soil tas moved only slightly beyond the source via the surface soil to M       M         Confined       Information instrace soil so bin the contaminati	Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio		
Opport         Strontium         84000         23000         3.65           Strontium         100         46000         0.0022           Zinc         130         23000         0.0056           CHF Scale         CHF Value         Sum the Ratios         4.31           CHF > 100         H (High)         (Medium)         2000         Comparison Value for Contaminant           100 > CHF > 2         M (Medium)         (Comparison Value for Contaminant)         Contaminant         M           CONTAMINANT         DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).         M         M           DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.         Value           Evident         Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point desposure         H           Potential         Contamination in surface soil has moved only sightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not surface soil to a point of exposure         M           OlfReCTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.         Confined         M           Information indicates a tow potential for contaminant migration from the source via the surface soil to a potential point of exposure (po	Aluminum	44000	77000	0.57		
Strontium       100       46000       0.0022         Strontium       100       46000       0.0056         CHF Scale       CHF Value       Sum the Ratios       4.31         CHF > 100       H (High)       100 > CHF > 2       M (Medium)       CHF (Maximum Concentration of Contaminant)         100 > CHF > 2       M (Medium)       CHF (Low)       CHF = 1       L (Low)         CONTAMINANT       DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.       Classification       Value         Evident       Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.       H       M         Potential       Contamination in surface soil as growed only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.       M         MIGRATORY       DIRECTIONS: Circle the value that corresponds most closely to the surface soil the box to the right (maximum value = H).       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil to the box to the right (maximum value = H).       M         MiGRATORY       DIRECTIONS: Record the single highest value from above in the	Copper	230	0.082			
Zinc       130       23000       0.0056         CHF Scale       CHF Value       Sum the Ratios       4.31         CHF > 100       H (High)       CHF > 100       H (High)         100 > CHF > 2       M (Medium)       CHF = [Maximum Concentration of Contaminant]         2 > CHF       L (Low)       CHF = [Maximum Concentration of Contaminant]         CONTAMINANT HAZARD FACTOR       DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS. Classification       Description       Value         Evident       Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.       H         Potential       Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or confined.       M         MIGRATORY PATHWAY FACTOR       DIRECTIONS: Record the single highest value right (maximum value = H).       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification       Description       Value         MigRATORY PATHWAY FACTOR       DIRECTIONS: Record the single highest value right (maximum value = H).       M       M	Iron	84000	84000 23000			
CHF Scale       CHF Value       Sum the Ratios       4.31         CHF > 100       H (High) $CHF > 100$ H (High) $CHF > 100$ $CHF > 100$ $H$ (High)         100 > CHF > 2       M (Medium) $CHF = \sum_i [Maximum Concentration of Contaminant]         2 > CHF       L (Low)       CHF = \sum_i [Maximum Concentration of Contaminant]         CONTAMINANT       DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).       M         CONTAMINANT       DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.       Value         DIRECTIONS: Circle the value that corresponds most closely to the surface soil is present at, moving loward, or has moved to a point of exposure.       H         Potential       Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is of sufficient to make a determination of Evident or Confined.       M         Confined       Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to presence of geological structures or physical controls).       L         MIGRATORY       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.       Clas$	Strontium	100	46000	0.0022		
CHF > 100       H (High)         100 > CHF > 2       M (Medium)         2 > CHF       L (Low)         CONTAMINANT       DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).       M         CONTAMINANT       DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS. Classification       Description       Value         Evident       Analytical data or observable evidence indicates that contamination in the surface soil is present at. moving toward, or has moved on a point of exposure.       H       H         Potential       Confined       Information insurface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.       M         MIGRATORY       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification       Description       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification       Director Confined.       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification       Descri	Zinc	130	23000	0.0056		
2 > CHF         L (Low)         [Comparison Value for Contaminant]           CONTAMINANT HAZARD FACTOR         DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).         M           DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS. Classification         Maintage of the surface soil migratory pathway at the MRS.           Evident         Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.         H           Potential         Contamination in surface soil has moved on y slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.         M           MiGRATORY PATHWAY FACTOR         DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).         M           DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification         Direcritors: Record the single highest value right (maximum value = H).         M           Directions: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification         Description         Value           Directions: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification         Description         Value           Directions: Circle the orepotential for receptors to have access to surface soil	CHF Scale	CHF Value	Sum the Ratios			
2 > CHF         L (Low)         [Comparison Value for Contaminant]           CONTAMINANT HAZARD FACTOR         DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).         M           DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS. Classification         Description         Value           Evident         Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.         H           Potential         Contamination in surface soil has moved on y slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.         M           MIGRATORY PATHWAY FACTOR         DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).         M           DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification         DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).         M           Identified         Identified receptors have access to surface soil to which contamination has moved or can move.         H           Potential         Identified receptors to have access to surface soil to which contamination has moved or can move.         M           Illefted         Identified receptors to have access to surface soil to which contamination has moved or can move. <td>CHF &gt; 100</td> <td>H (High)</td> <td>Maximum Concentration of C</td> <td>ontaminant]</td>	CHF > 100	H (High)	Maximum Concentration of C	ontaminant]		
ZYSCHP         L (LOW)           CONTAMINANT HAZARD FACTOR         DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).         M           DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS. Classification         Description         Value           Evident         Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving loward, or has moved to a point of exposure.         H           Potential         Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.         M           Confined         Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to presence of geological structures or physical controls).         L           MIGRATORY PATHWAY FACTOR         DIRECTIONS: Record the single highest value right (maximum value = H).         M           DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification         Description         Value           DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification         Description         Value           Directions: circle the value that corresponds most closely to which contamination has moved or can move.         H           <	100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{i} \frac{1}{1}$			
HAZARD FACTOR       (maximum value = H).       IM         DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.       Value         Evident       Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.       H         Potential       Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.       M         Confined       Information indicates a low potential for contaminant migration from the source via the surface soil to a point of exposure (possibly due to presence of geological structures or physical controls).       L         MIGRATORY PATHWAY FACTOR       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M         Potential       Identified receptors have access to surface soil to which contamination has moved or can move.       H         Potential       Identified receptors to have access to surface soil to which contamination has moved or can move.       H         Potential       Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.       H         RECEPTOR FACTOR       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M	2 > CHF	L (Low)		aminantj		
DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.         Classification       Description       Value         Evident       Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.       H         Potential       Confamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.       M         Confined       Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to presence of geological structures or physical controls).       L         MIGRATORY       DIRECTIONS: Record the single highest value       from above in the box to the right (maximum value = H).       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.       Value       H         Identified       Identified receptors have access to surface soil to which contamination has moved or can move.       H         Potential       Identified for receptors to have access to surface soil to which contamination has moved or can move.       H         Identified       Identified receptors to have access to surface soil to which contamination has moved or can move.       H         Potential       Utitle or no potential for receptors to have						
Evidentmoving toward, or has moved to a point of exposure.HPotentialContamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.MConfinedInformation indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to presence of geological structures or physical controls).LMIGRATORY PATHWAY FACTORDIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).MDIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. ClassificationValueIdentifiedIdentified receptors have access to surface soil to which contamination has moved or can move.HPotentialLittle or no potential for receptors to have access to surface soil to which contamination has moved or can move.MLimitedLittle or no potential for receptors to have access to surface soil to which contamination has moved or can move.MRECEPTOR FACTORDIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).MPotentialIdentified receptors to have access to surface soil to which contamination has moved or can move.MReceptor FactorIdentified receptors to have access to surface soil to which contamination has moved or can move.MPotentialIdentified receptors to have access to surface soil to which contamination has moved or can move.MLimited <td< th=""><th></th><th>e value that corresponds most closely to</th><th>o the surface soil migratory pathway at the MI</th><th></th></td<>		e value that corresponds most closely to	o the surface soil migratory pathway at the MI			
Potential       move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.       M         Confined       Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to presence of geological structures or physical controls).       L         MIGRATORY PATHWAY FACTOR       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M         DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification       Description       Value         Identified       Identified receptors have access to surface soil to which contamination has moved or can move.       H         Potential       Potential for receptors to have access to surface soil to which contamination has moved or can move.       M         Limited       Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.       L         RECEPTOR FACTOR       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M	Evident					
Commeda potential point of exposure (possibly due to presence of geological structures or physical controls).LMIGRATORY PATHWAY FACTORDIRECTIONS: Record the single highest value right (maximum value = H).MDIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. ClassificationNDIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. ClassificationValueIdentifiedIdentified receptors have access to surface soil to which contamination has moved or can move.HPotentialPotential for receptors to have access to surface soil to which contamination has moved or can move.MLimitedLittle or no potential for receptors to have access to surface soil to which contamination has moved or can move.Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.MRECEPTOR FACTORDIRECTIONS: Record the single highest value right (maximum value = H).M	Potential	move but is not moving appreciably, or information is not sufficient to make a determination of				
PATHWAY FACTOR       right (maximum value = H).       IV         Receptor Factor         DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.         Classification       Description       Value         Identified       Identified receptors have access to surface soil to which contamination has moved or can move.       H         Potential       Potential for receptors to have access to surface soil to which contamination has moved or can move.       M         Limited       Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.       L         RECEPTOR FACTOR       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M	Confined			L		
DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.         Classification       Description       Value         Identified       Identified receptors have access to surface soil to which contamination has moved or can move.       H         Potential       Potential for receptors to have access to surface soil to which contamination has moved or can move.       M         Limited       Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.       L         RECEPTOR FACTOR       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M				М		
ClassificationDescriptionValueIdentifiedIdentified receptors have access to surface soil to which contamination has moved or can move.HPotentialPotential for receptors to have access to surface soil to which contamination has moved or can move.MLimitedLittle or no potential for receptors to have access to surface soil to which contamination has moved or can move.LRECEPTOR FACTORDIRECTIONS: Record the single highest value right (maximum value = H).M						
Identified       Identified receptors have access to surface soil to which contamination has moved or can move.       H         Potential       Potential for receptors to have access to surface soil to which contamination has moved or can move.       M         Limited       Little or no potential for receptors to have access to surface soil to which contamination has moved       L         RECEPTOR FACTOR       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M			-			
Intertined       Potential       Potential for receptors to have access to surface soil to which contamination has moved or can move.       M         Limited       Little or no potential for receptors to have access to surface soil to which contamination has moved       L         RECEPTOR FACTOR       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M	Classification			Value		
Potential       move.       M         Limited       Little or no potential for receptors to have access to surface soil to which contamination has moved       L         RECEPTOR FACTOR       DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).       M	Identified	Identified receptors have access to surface so	I to which contamination has moved or can move.	н		
Initial     or can move.     L       RECEPTOR FACTOR     DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).     M	Potential					
right (maximum value = H).	Limited					
	RECEPTOR FACTOR			М		
No Known or Suspected Sediment (Ecological Endpoint) MC Hazard		No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard			

Ambient soil samples collected are used to for metals comparison per TPP concurrence. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score. MPF and RF are rated M to reflect potential contaminant migration and receptor access.

нн	Table 27         HHE Module:       Supplemental Contaminant Hazard Factor Table         Contaminant Hazard Factor (CHF)					
tables. their m Calcula compa	Indicate the media in aximum concentration the and record the ration record the ration record the rational sectors and the sec	n which these contam ons and their compa o for each contamina ine the CHP for each	nants are present. Th lison values (from Ap nt by dividing the <b>max</b>	at the MRS. This is a t do not fit in the previous en record all contaminants, pendix B in the table below. inum concentration by the mate media specific tables.		
Note: Remember not	e add ratios from diffe	rrent media. Maximum Conc	entration Compa	rison Value		
	······································					

•

MRS 10 - Page - 20 September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

_ ____

### **Determining the HHE Module Rating**

### **DIRECTIONS:**

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the Three-Letter Combination boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A–G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value		Three-Letter Combination (Hs-Ms-Ls)		Media Rating (A-G)
Groundwater (Table 21)						1	
Surface Water/Human Endpoint (Table 22)	-	-	-		-		-
Sediment/Human Endpoint (Table 23)	-	-	-		-		-
Surface Water/Ecological Endpoint (Table 24)	-	-	-		-		-
Sediment/Ecological Endpoint (Table 25)	-	-	-		-		-
Surface Soil (Table 26)	М	М	М	ţ.	MMM		D

#### **DIRECTIONS** (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

#### Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

### HHE MODULE RATING

### HHE Ratings (for reference only)

D

Combination	Rating		
ннн	A		
ННМ	В		
HHL			
НММ	C .		
HML			
MMM	D		
HLL	_		
MML	E		
MLL	F		
LLL	G		
	Evaluation Pending		
Alternative Module Ratings	No Longer Required		
, i i i i i i i i i i i i i i i i i i i	No Known or		
	Suspected MC Hazard		

### Table 29 MRS Priority

**DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.

**Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		А	1		
A	2	В	2	A	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending Evaluation Pending		Evaluation	Pending		
No Longer	Required	No Longer	Required	No Longer Required	
No Known or Suspected Explosive Hazard No Known or Suspected CWM Hazard		No Known or Susp	ected MC Hazard		
	MRS or ALTERNATIVE PRIORITY			4	]

MRS 10 - Page - 22

**MRSPP** Evaluation

**MRS 11** 

.

į

-

This page intentionally left blank.

_____

٠

### Table A MRS Background Information

**DIRECTIONS:** Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS 11 - Defensive Firing Area #2

Component: US Marines and US Navy

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 11 Defensive Firing Area #2 (I02PR006811)

#### Date Information Entered/Updated: January 2007/ April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

D PA	✓SI		🗅 FS	
RA-C		🗆 RA-O		

#### Media Evaluated (check all that apply):

Groundwater	Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

#### **MRS Summary:**

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 11 consists of 719 acres located on the west side of Culebra between Northwest Peninsula and the town of Dewey. The area was leased from a private landowner in Nov. 1923, and several training exercises were conducted in this area including 75mm and 155mm firing from Firewood Bay at Mono Cay and portions of Cayo de Luis Pena in 1924, FLEX #4 including firing of small arms and 81mm mortars in 1936, and FLEX #7 in 1941 with boat to beach firing of 5-inch and 6-inch projectiles. MRS 11 has been extensively developed for residential use, and is privately owned except for municipality lands such as the police and fire stations

Description of Pathways for Human and Ecological Receptors:

Soils on the MRS were sampled as this is considered the most likely location for MC. Access to the site is unrestricted. Description of Receptors (Human and Ecological):

The area is developed for residential use and the beaches are used by recreational boaters. USFW refuge areas are located in the area.

# Table 1 EHE Module: Munitions Type Data Element Table

**DIRECTIONS:** Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with <u>all</u> munitions types known or suspected to be present at the MRS.

Note: The terms practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20
High explosive (unused)	All DMM containing a high explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability.	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that:	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a not control agent filler (e.g., tear gas).	3
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	30

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

Munitions used include 75mm and 155mm, small arms, 81mm mortars, and boat to beach firing of 5-inch and 6-inch projectiles (Appendix J of the 2007 SI Report). Munitions are rated sensitive given the potential for the mortars and heavy artillery to contain white phosphorus fillers.

Delivery Order 0008

### EHE Module: Source of Hazard Data Element Table

**DIRECTIONS:** Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	<ul> <li>The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas.</li> </ul>	
Former munitions treatment (i.e., OB/OD) unit	<ul> <li>The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.</li> </ul>	
Former practice munitions range	<ul> <li>The MRS is a former military range on which only practice munitions without sensitive fuzes were used.</li> </ul>	
Former maneuver area	<ul> <li>The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.</li> </ul>	
Former burial pit or other disposal area	<ul> <li>The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.</li> </ul>	
Former industrial operating facilities	<ul> <li>The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.</li> </ul>	
Former firing points	<ul> <li>The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.</li> </ul>	
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	
Former storage or transfer points	<ul> <li>The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).</li> </ul>	2
Former small arms range	The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.].	
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	
SOURCE OF HAZARD DIRECTIONS: Record <u>the single highest score</u> from above in to the right (maximum score = 10).		10

### EHE Module: Location of Munitions Data Element Table

**DIRECTIONS:** Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS. **Note:** The terms *surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the

Note: The terms surface, subsurface, physical evidence, and historical evidence are defined in Append Primer.

Classification	Description	Score
Confirmed surface	<ul> <li>Physical evidence indicates that there are UXO or DMM on the surface of the MRS</li> <li>Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS.</li> </ul>	
Confirmed subsurface, active	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM.</li> <li>Exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> </ul>	20
Confirmed subsurface, stable	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> </ul>	15
Suspected (physical evidence)		
Suspected (historical evidence)	There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	<ul> <li>There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.</li> </ul>	
Small arms (regardless of location)	<ul> <li>The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	
LOCATION OF MUNITIONS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	10

Table 4.2 of the 2007 SI Report notes finding a discarded 20 mm shell casing during the site visit.

MRS 11 - Page - 4

### EHE Module: Ease of Access Data Element Table

**DIRECTIONS:** Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

Note: The term barrier is defined in Appendix C of the Primer.

Classification	Description	
No barrier	<ul> <li>There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).</li> </ul>	
Barrier to MRS access is incomplete	• There is a barrier preventing access to parts of the MRS, but not the entire MRS.	
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	<ul> <li>There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.</li> </ul>	0
EASE OF ACCESS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <b>Ease of Access</b> classification in the s	pace
Although dense vegetation imperent Paragraph 5.11.3.1).	edes access to parts of the MRS, there are no barriers preventing access (2007	7 SI Report

EHE Module: Status of Property Data Element Table

**DIRECTIONS:** Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	<ul> <li>The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies.</li> </ul>	
Scheduled for transfer from DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.	3
DoD control	<ul> <li>The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.</li> </ul>	0
STATUS OF PROPERTY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the Status of Property classification in the	e space
Section 2.4.1.10 notes the MRS	is privately owned.	

__ .

September 2007 Contract W912DY-04-D-0005 ł

### EHE Module: Population Density Data Element Table

**DIRECTIONS:** Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

**Note:** If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

Classification	Description	
> 500 persons per square mile	<ul> <li>There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	
100–500 persons per square mile	There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	
<b>POPULATION DENSITY</b> DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).		1
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <b>Population Density</b> classification in	the space
Section 2.2.7 of the 2007 SI not obtained from Census 2000.	es that the population density of the municipality of Culebra is 71.8 persons pe	er mile, as

### EHE Module: Population Near Hazard Data Element Table

**DIRECTIONS:** Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score	
26 or more inhabited structures	• There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.		
16 to 25 inhabited structures	<ul> <li>There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	4	
11 to 15 inhabited structures	<ul> <li>There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	3	
6 to 10 inhabited structures	<ul> <li>There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	2	
1 to 5 inhabited structures	• There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1	
• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.		0	
POPULATION NEAR HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5	

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

MRS 11 is located within a two-mile radius surrounding the Municipality of Culebra which has just fewer than 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

#### EHE Module: Types of Activities/Structures Data Element Table

**DIRECTIONS:** Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term inhabited structure is defined in Appendix C of the Primer.

Classification	Description	
Residential, educational, commercial, or subsistence	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.</li> </ul>	
Parks and recreational areas	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.</li> </ul>	4
<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.</li> </ul>		3
<ul> <li>Activities are conducted, or inhabited structures are locate to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.</li> </ul>		2
No known or recurring activities	<ul> <li>There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.</li> </ul>	
TYPES OF ACTIVITIES/STRUCTURES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

MRS 11 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

### EHE Module: Ecological and/or Cultural Resources Data Element Table

**DIRECTIONS:** Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description     There are both ecological and cultural resources present on the MRS.	
Ecological and cultural resources present		
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	<ul> <li>There are no ecological resources or cultural resources present on the MRS.</li> </ul>	
ECOLOGICAL AND/OR CULTURAL RESOURCES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3

The MRS is in an area that contains USFWS refuges that are utilized by various species of birds. No cultural resources are reported on the site (2007 SI Section 2.2.6) and the 2006 SSWP.

Determinir	Table 10         ng the EHE Module Rating			
		Source	Score	Value
DIRECTIONS:	Explosive Hazard Factor Data El	ements		
	Munitions Type	Table 1	30	10
<ol> <li>From Tables 1–9, record the data element scores in the</li> </ol>	Source of Hazard	Table 2	10	40
Score boxes to the right.	Accessibility Factor Data Element	nts		
<ol><li>Add the Score boxes for each of the three factors and record</li></ol>	Location of Munitions	Table 3	10	
this number in the <b>Value</b> boxes	Ease of Access	Table 4	10	25
to the right.	Status of Property	Table 5	5	
<ol><li>Add the three Value boxes and record this number in the EHE</li></ol>	Receptor Factor Data Elements	<u>.</u>		
Module Total box below.	Population Density	Table 6	1	
4. Circle the appropriate range for	Population Near Hazard	Table 7	5	14
the EHE Module Total below.	Types of Activities/ Structures	Table 8	5	14
5. Circle the EHE Module Rating	Ecological and /or Cultural Resources	Table 9	3	
that corresponds to the range selected and record this value in the EHE Module Rating box	EHE MODULE TOTAL 79		79	
found at the bottom of the table.	EHE Module Total	EHE Module Rating		ating
Note:	92 to 100		A	
An alternative module rating may be	82 to 91		В С	
assigned when a module letter rating is in inappropriate. An alternative module	71 to 81			
rating is used when more information is	60 to 70 48 to 59		D	
needed to score one or more data	38 to 47		E F	
elements, contamination at an MRS was	less than 38		 G	
previously addressed, or there is no				dino
reason to suspect contamination was		Evaluation Pending No Longer Required		
ever present at an MRS.	No Kno		nown or Susp plosive Haza	pected
	EHE MODULE RATING		С	

- 4

Ľ

### CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS.
 Note: The terms *CWM/UXO*, *CWM/DMM*, *physical evidence*, and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score	
CWM, explosive configuration either UXO or damaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Explosively configured CWM that are UXO (i.e., CWM/UXO).</li> <li>Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.</li> </ul>		
CWM mixed with UXO	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO.</li> </ul>	25	
CWM, explosive configuration that are undamaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.</li> </ul>	20	
CWM, not explosively configured or CWM, bulk container	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Nonexplosively configured CWM/DMM.</li> <li>Bulk CWM/DMM (e.g., ton container).</li> </ul>	15	
CAIS K941 and CAIS K942	<ul> <li>The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942- toxic gas set M-2/E11.</li> </ul>	12	
CAIS (chemical agent identification sets)	<ul> <li>Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.</li> </ul>	10	
Evidence of no CWM	<ul> <li>Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.</li> </ul>	0	
CWM CONFIGURATION	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0	

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI

Report). Tables 12-19 have been omitted.

MRS 11 - Page - 12

	Determinin	Table 20 og the CHE Module Rating			
			Source	Score	Value
	CTIONS:	CWM Hazard Factor Data Eleme	nts		
		CWM Configuration	Table 11	0	
1.	From Tables 11–19, record the data element scores in the	Sources of CWM	Table 12	0	0
Score boxes to the right.		Accessibility Factor Data Elemen	nts		
2.	Add the <b>Score</b> boxes for each of the three factors and record	Location of CWM	Table 13	0	
	this number in the Value boxes	Ease of Access	Table 14	0	0
	to the right.	Status of Property	Table 15	0	
3. Add the three Value boxes and record this number in the CHE					_
	Module Total box below.	Population Density	Table 16	0	
4.	<ol> <li>Circle the appropriate range for the CHE Module Total below.</li> </ol>	Population Near Hazard	Table 17	0	0
		Types of Activities/ Structures	Table 18	0	U
5.	Circle the <b>CHE Module Rating</b> that corresponds to the range	Ecological and /or Cultural Resources	Table 19	0	
	selected and record this value in the CHE Module Rating box	CHE MODULE TOTAL 0.			0.
	found at the bottom of the table.	CHE Module Total	CHE Module Rating		
Note:		92 to 100		A	
	ernative module rating may be	82 to 91		<u> </u>	
	ned when a module letter rating is	71 to 81	·	<u> </u>	
	ropriate. An alternative module	60 to 70 48 to 59		D E	
rating	is used when more information is	38 to 47		 F	
	ed to score one or more data	Jess than 38		G	
	ents, contamination at an MRS was		Eva	aluation Pen	ding
	ously addressed, or there is no	Alternative Module Ratings	No	Longer Requ	uired
	n to suspect contamination was present at an MRS.		No Known or Suspected CWM Hazard		
		CHE MODULE RATING	No Known or Suspected CWM Hazard		

MRS 11 - Page - 13

_

• •

.

	Table	21			
	HHE Module: Groundwate				
	Contaminant Hazard	d Factor (CHF)			
		ntaminants in the MRS's groundwater and th able below. Additional contaminants can be r			
		ach contaminant by dividing the maximum	econded on		
concen	concentration by the comparison value. Determine the CHF by adding the ratios for each medium				
		orded on Table 27. Based on the CHF, use the list of the set of th			
	undwater, select the box at the bottom of		) hiesen in		
-	rather than total, metals analyses when				
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
CHF > 100	H (High)	$CHF = \sum - [Maximum Concentration of C]$	ontaminant]		
100 > CHF > 2	[Comparison Value for Contaminant]				
	2 > CHF L (LOW)				
CONTAMINANT HAZARD FACTOR					
	Migratory Pathy				
DIRECTIONS: Circle the Classification		b the groundwater migratory pathway at the N scription	RS. Value		
Evident		that contamination in the groundwater is present at,	H		
Evident	moving toward, or has moved to a point of expos	sure.	<u>г</u> і		
Potential		slightly beyond the source (i.e., tens of feet), could ion is not sufficient to make a determination of Evident	М		
Confined	Information indicates a low potential for contamin a potential point of exposure (possibly due to ge	nant migration from the source via the groundwater to ological structures or physical controls).	L		
MIGRATORY		hest value from above in the box to the			
PATHWAY FACTOR	right (maximum value				
DIRECTIONS: Circle th	Receptor F	actor the groundwater receptors at the MRS.			
Classification			Value		
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current				
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB M aquifer).				
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater				
RECEPTOR		hest value from above in the box to the			
FACTOR	right (maximum value :	= H).			
	No Kno	own or Suspected Groundwater MC Hazard			

Per TPP concurrence, no groundwater samples were collected as part of the SI.

----

í.

#### HHE Module: Surface Water – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios			
	· · · · · · · · · · · · · · · · · · ·					
CHF Scale	CHF Value	Sum The Ratios				
CHF > 100	H (High)					
100 > CHF > 2						
2 > CHF	L (Low)	[Comparison Value for Contar	ninant]			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right				
DIRECTIONS: Circle the Classification	Dese	the surface water migratory pathway at the M cription	/IRS. Value			
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.					
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.					
Confined		ant migration from the source via the surface water to sence of geological structures or physical controls).	L			
MIGRATORY PATHWAY FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).					
		the surface water receptors at the MRS.				
Classification Identified		to which contamination has moved or can move.	Value H			
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.					
Limited		Little or no potential for receptors to have access to surface water to which contamination has moved				
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum valu					
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard				

Per TPP concurrence, no surface water samples were collected as part of the SI

~

нн	Table 2 IE Module: Sediment – Human E <u>Contaminant Hazard</u>	indpoint Data Element Table		
values Calcula compa additior record	the <b>maximum concentrations</b> of all cont (from Appendix B) in the table below. Add the and record the <b>ratios</b> for each contamine <b>rison value</b> . Determine the <b>CHF</b> by additional contaminants recorded on Table 27. B	aminants in the site's sediment and their c ditional contaminants can be recorded on T nant by dividing the maximum concentrat ng the ratios for each medium together, ind ased on the CHF, use the CHF Scale to d spected MC hazard for human endpoints p	Table 27. <b>ion</b> by the cluding etermine and	
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
CHF Scale CHF > 100	CHF Value H (High)	Sum The Ratios		
100 > CHF > 2	M (Medium) G	$HF = \sum \frac{[Maximum Concentration of Concentration]}{[Maximum Concentration]}$	itaminant]	
2 > CHF	L (Low)	[Comparison Value for Contam	ninant	
CONTAMINANT HAZARD FACTOR				
	Migratory Pathwa			
DIRECTIONS: Circle th Classification		he sediment migratory pathway at the MRS r <b>iption</b>	S. Value	
Evident	Analytical data or observable evidence indicates the moving toward, or has moved to a point of exposu	hat contamination in the sediment is present at,	H	
Potential	Contamination in sediment has moved only slightly but is not moving appreciably, or information is not Confined.	y beyond the source (i.e., tens of feet), could move sufficient to make a determination of Evident or	М	
Confined	Information indicates a low potential for contamina potential point of exposure (possibly due to preser	nt migration from the source via the sediment to a ice of geological structures or physical controls).	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =			
	Receptor Fa			
Classification	ne value that corresponds most closely to t	ription	Value	
Identified	Identified receptors have access to sediment to wh	•	H	
Potential	Potential for receptors to have access to sediment	to which contamination has moved or can move.	M	
Limited	Little or no potential for receptors to have access t can move.	o sediment to which contamination has moved or	L	
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum valu		Н	
	No Known or Suspected	Sediment (Human Endpoint) MC Hazard		

Per TPP concurrence no sediment samples were collected as part of the SI.

#### HHE Module: Surface Water – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

**DIRECTIONS:** Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	nt Maximum Concentration (μg/L) Comparison Value (μg/L)						
			<u></u>				
	· · · · · · · · · · · · · · · · · · ·						
CHF Scale	CHF Value	Sum the Ratios					
CHF > 100	H (High)	- Maximum Concentration of C	ontaminanti				
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of Concentration]}{[Maximum Concentration]}$	Sitterinitianty				
2 > CHF	L (Low)	[Comparison Value for Conta	minant]				
CONTAMINANT         DIRECTIONS: Record the CHF Value from above in the box to the right (maximum value = H).							
	Migratory Pathy	vay Factor					
DIRECTIONS: Circle th		o the surface water migratory pathway at the	MRS.				
Classification							
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.						
Potential		Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident					
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).						
MIGRATORY	DIRECTIONS: Record the single hig	hest value from above in the box to the					
PATHWAY FACTOR	right (maximum value	= H).					
	Receptor F						
		the surface water receptors at the MRS.	Value				
Classification	the second s	scription	Value H				
Identified Identified receptors have access to surface water to which contamination has moved or can move.							
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.						
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.						
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single hig</u> right (maximum value	h <u>est value</u> from above in the box to the = H).					
	No Known or Suspected Surfa	ce Water (Ecological Endpoint) MC Hazard					

Per TPP concurrence, no surface water samples were collected as part of the SI

Table 25         HHE Module: Sediment – Ecological Endpoint Data Element Table <u>Contaminant Hazard Factor (CHF)</u> DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the sediment, select the box at the bottom of the table.					
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios		
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	$CHF = \sum \frac{[Maximum Concentration of Cont}{2}$	aminant]		
100 > CHF > 2		[Comparison Value for Contamin	nant]		
2 > CHF	L (Low)				
CONTAMINANT HAZARD FACTOR					
		o the sediment migratory pathway at the MRS			
Classification		scription s that contamination in the sediment is present at,	Value		
Evident	moving toward, or has moved to a point of expo	• • • •	н		
Potential		htly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or	. М		
Confined		inant migration from the source via the sediment to a service of geological structures or physical controls).	L		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hic right (maximum value	<b>hest value</b> from above in the box to the = H).			
	Receptor				
	DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.				
Classification	Identified receptors have access to sediment to	scription which contamination has moved or can move.	Value		
Identified	-		H		
Potential	Potential for receptors to have access to sedim	ent to which contamination has moved or can move.	М		
Limited	Little or no potential for receptors to have acces can move.	s to sediment to which contamination has moved or	L		
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value	thest value from above in the box to the = H).			
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard			

Per TPP concurrence, no sediment samples were collected as part of the SI.

#### HHE Module: Surface Soil Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio	
Aluminum	31000	77000	0.40	
Strontium	2900	46000	0.063	
· · · · · · · · · · · · · · · · · · ·				
CHF Scale	CHF Value	Sum the Ratios	0.463	
CHF > 100	H (High)	ontaminant]		
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Comparison Value for Contained on the contained $	aminantl	
2 > CHF	L (Low)			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).			
	Migratory Path			
		o the surface soil migratory pathway at the MI	RS. Value	
Classification	Description     Analytical data or observable evidence indicates that contamination in the surface soil is present at,			
Evident	moving toward, or has moved to a point of exp	Н		
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined		ninant migration from the source via the surface soil to presence of geological structures or physical controls).	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hi right (maximum value	ghest value from above in the box to the e = H).	L	
	Receptor	Factor		
	e value that corresponds most closely t	o the surface soil receptors at the MRS.		
Classification	••••••••••••••••••••••••••••••••••••••	scription	Value	
Identified	Identified receptors have access to surface so	il to which contamination has moved or can move.	н	
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record the single hi right (maximum value	ighest value from above in the box to the e = H).	L	
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard		

Ambient soil samples collected are used to for metals comparison per TPP concurrence. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score. MPF and RF are rated low given the lack of contamination measured in the soil.

Table 27           HHE Module: Supplemental Contaminant Hazard Factor Table							
Contaminant Hazard Factor (CHF) DIRECTIONS: Only use this table if there are more than five contaminants present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables. Note: Remember not to add ratios from different media.							
Media							
Media		Contaminan	t Maximu	m Concentration	Comparison Value	Ratio	
	_ , , ,						
· · · · · · · · · · · · · · · · · · ·							
					· · · · · · · · · · · · · · · · · · ·		
			·····-				
		·····		······			
				····			
		·····					

_____

_____

____

_____

.

### **Determining the HHE Module Rating**

#### DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A–G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value		Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)						
Surface Water/Human Endpoint (Table 22)	-	-	-		-	-
Sediment/Human Endpoint (Table 23)	-	-	-	Ň	-	-
Surface Water/Ecological Endpoint (Table 24)	-	-	-		-	-
Sediment/Ecological Endpoint (Table 25)	-	-	-		-	-
Surface Soil (Table 26)	L	L	L		LLL	G

#### **DIRECTIONS** (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box below.

#### Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

### HHE MODULE RATING

### HHE Ratings (for reference only)

G

Combination	Rating
ННН	A
ННМ	В
HHL	
НММ	C C
HML	
МММ	D
HLL	
MML	E
MLL	F
	G
	Evaluation Pending
Alternative Module Ratings	No Longer Required
	No Known or Suspected MC Hazard

¥.

### Table 29 MRS Priority

**DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.

**Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		A	1		
Α	2	В	2	А	2
В	3	C	3	В	3
С	4	D	4	C	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Evaluation Pending Evaluation Pending		Pending	Evaluation Pending	
No Longer	Required	No Longer Required		No Longer Required	
No Known or Suspected Explosive Hazard No Known or Suspected CWM Hazard No Known or Suspected M		ected MC Hazard			
MRS or ALTERNATIVE PRIORITY			4		

MRS 11 - Page - 22

**MRSPP** Evaluation

**MRS 12** 

.

This page intentionally left blank.

-

•

## Table A

#### **MRS Background Information**

**DIRECTIONS:** Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS 12 – Luis Pena Channel Water Areas

Component: US Navy and US Marines

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 12 Luis Pena Channel Water Areas (I02PR006812)

Date Information Entered/Updated: January 2007/ September 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

D PA	✓SI	🗆 Ri	🗆 FS	
🖾 RA-C		🛛 RA-O		

#### Media Evaluated (check all that apply):

Groundwater	QSediment (human receptor)
Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

#### MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 12 consists of approximately 835 acres of water along the west coast of Culebra from the Northwest Peninsula to Scorpion Point. The MRS is located adjacent to locations that were used for ordnance activities on the west site of Culebra. These activities include training exercises with live fire, amphibious landing exercises, boat to beach artillery, and direct artillery fire from Firewood Bay to the northern portion of Cao de Luis Pena.

Description of Pathways for Human and Ecological Receptors:

MRS 12 is an underwater MRS that is hydrologically connected to the Atlantic Ocean. The ocean would dilute MC. Description of Receptors (Human and Ecological):

MRS 12 includes all of the area that makes up the Luis Pena Water Refuge. The site is heavily used for recreational activities.

# Table 1 EHE Module: Munitions Type Data Element Table

**DIRECTIONS:** Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with <u>all</u> munitions types known or suspected to be present at the MRS.

Note: The terms practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20
High explosive (unused)	All DMM containing a high explosive filler that: <ul> <li>Have not been damaged by burning or detonation</li> <li>Are not detenorated to the point of instability.</li> </ul>	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are:	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a not control agent filler (e.g., tear gas).	3
Smail arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	30

MRS is a water area where potential munitions used include mortars, explosive bombs and projectiles (Appendix J of the 2007 SI Report). The munitions are rated as sensitive given the potential for the mortars to contain white phosphorus fillers.

#### EHE Module: Source of Hazard Data Element Table

**DIRECTIONS:** Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	<ul> <li>The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas.</li> </ul>	
Former munitions treatment (i.e., OB/OD) unit	<ul> <li>The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.</li> </ul>	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	an MRS into this category.	
Former burial pit or other disposal area	<ul> <li>The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.</li> </ul>	5
Former industrial operating facilities	<ul> <li>The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.</li> </ul>	4
Former firing points	• The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	
Former storage or transfer points	<ul> <li>The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).</li> </ul>	
Former small arms range	<ul> <li>The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.].</li> </ul>	
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	
SOURCE OF HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

Section 2.4.1.11 of the 2007 SI Report.

#### EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS. Note: The terms *surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the

Score Classification Description Physical evidence indicates that there are UXO or DMM on the surface of the MRS Historical evidence (e.g., a confirmed incident report or accident report) indicates there 25 **Confirmed surface** ٠ are UXO or DMM on the surface of the MRS ٠ Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 20 Confirmed subsurface, active Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Physical evidence indicates the presence of UXO or DMM in the subsurface of the ٠ MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Confirmed subsurface, stable 15 Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. There is physical evidence (e.g., munitions debris, such fragments, penetrators, Suspected (physical 10 projectiles, shell casings, links, fins), other than the documented presence of UXO or evidence) DMM, indicating that UXO or DMM may be present at the MRS. Suspected (historical ٠ There is historical evidence indicating that UXO or DMM may be present at the MRS. 5 evidence) ٠ There is physical or historical evidence indicating that UXO or DMM may be present in Subsurface, physical the subsurface, but there is a physical constraint (e.g., pavement, water depth over 2 constraint 120 feet) preventing direct access to the UXO or DMM. The presence of small arms ammunition is confirmed or suspected, regardless of other Small arms (regardless of factors such as geological stability [There must be evidence that no other types of 1 munitions (e.g., grenades) were used or are present at the MRS to place an MRS into location) this category.]. Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are Evidence of no munitions 0 present DIRECTIONS: Record the single highest score from above in the box LOCATION OF MUNITIONS 20 to the right (maximum score = 25).

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Underwater ordnance items have been reported, it is not known weather these are MEC or MD (Sections 4.12.1 and Appendix J of the 2007 SI Report).

Primer.

EHE Module: Ease of Access Data Element Table

**DIRECTIONS:** Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

Note: The term barrier is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	10
Barrier to MRS access is incomplete	• There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	<ul> <li>There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.</li> </ul>	0
EASE OF ACCESS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	8
provided.	MRS-specific data used in selecting the <i>Ease of Access</i> classification in the s eational diving in this MRS there are no barriers to access.(2007 SI Report Par	

# Table 5 EHE Module: Status of Property Data Element Table

**DIRECTIONS:** Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

MRS is at a location that is no longer owned by, leased to, or rwise possessed or used by DoD. Examples are privately owned or water bodies; land or water bodies owned or controlled by state, l, or local governments; and land or water bodies managed by other ral agencies. MRS is on land or is a water body that is owned, leased, or rwise possessed by DoD, and DoD plans to transfer that land or er body to the control of another entity (e.g., a state, tribal, or local ernment; a private party; another federal agency) within 3 years from date the rule is applied.	<b>5</b>
rwise possessed by DoD, and DoD plans to transfer that land or er body to the control of another entity (e.g., a state, tribal, or local ernment; a private party; another federal agency) within 3 years from	3
MRS is on land or is a water body that is owned, leased, or rwise possessed by DoD. With respect to property that is leased or rwise possessed, DoD must control access to the MRS 24 hours day, every day of the calendar year.	0
CTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
	wise possessed by DoD. With respect to property that is leased or wise possessed, DoD must control access to the MRS 24 hours ay, every day of the calendar year. TIONS: Record <u>the single highest score</u> from above in the box

Section 2.3 of the 2007 SI notes that all of the land acquired by the military on Culebra and the surrounding cays and cayos was excessed to the Department of the Interior or transferred to the government of Puerto Rico. MRS 12 is managed by the PR DNR for recreational purposes.

#### EHE Module: Population Density Data Element Table

**DIRECTIONS:** Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

**Note:** If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	
<ul> <li>There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	3
• There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	1
<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1
MRS-specific data used in selecting the <b>Population Density</b> classification in	the space
N	<ul> <li>which the MRS is located, based on U.S. Census Bureau data.</li> <li>There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> <li>There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> <li>DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).</li> </ul>

#### EHE Module: Population Near Hazard Data Element Table

**DIRECTIONS:** Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	• There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	
16 to 25 inhabited structures	• There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	• There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	• There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	• There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

MRS 12 is located within a two-mile radius surrounding the Municipality of Culebra which has just fewer than 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

#### EHE Module: Types of Activities/Structures Data Element Table

**DIRECTIONS:** Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term inhabited structure is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.</li> </ul>	
Parks and recreational areas	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.</li> </ul>	4
Agricultural, forestry	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.</li> </ul>	3
Industrial or warehousing	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.</li> </ul>	2
No known or recurring activities	<ul> <li>There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.</li> </ul>	1
TYPES OF ACTIVITIES/STRUCTURES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

MRS 12 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

#### EHE Module: Ecological and/or Cultural Resources Data Element Table

**DIRECTIONS:** Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3
	/ MRS-specific data used in selecting the <i>Ecological and/or Cultural Resource</i> n the space provided.	es

MRS 12 is included within the Luis Pena Water Refuge managed by the PR DNR and is used for recreational purposes; No cultural resources are documented on the site per the 2007 SI (Section 2.2.6) and the 2006 SSWP.

	Determinir	Table 10 Ing the EHE Module Rating				
			Source	Score	Value	
DIRECTIONS:		Explosive Hazard Factor Data El	ements			
		Munitions Type	Table 1	30	40	
<ol> <li>From Tables 1–9, data element scor</li> </ol>		Source of Hazard	Table 2	10	40	
Score boxes to the right.		Accessibility Factor Data Eleme	nts	<u></u>		
2. Add the <b>Score</b> boxes for each		Location of Munitions	Table 3	20		
of the three factors and record this number in the <b>Value</b> boxes	Ease of Access	Table 4	10	35		
to the right.		Status of Property	Table 5	5		
3. Add the three <b>Value</b> boxes and record this number in the EHE		Receptor Factor Data Elements	<u></u>			
Module Total box		Population Density	Table 6	1		
4. Circle the appropr	iate range for	Population Near Hazard	Table 7	5		
	the EHE Module Total below.	Types of Activities/ Structures	Table 8	5	14	
5. Circle the EHE Mo	odule Rating	Ecological and /or Cultural Resources	Table 9	3		
that corresponds to the range selected and record this value in the <b>EHE Module Rating</b> box found at the bottom of the table.		EHE MODULE TOTAL 89			89	
		EHE Module Total	EHE	Module R	ating	
Note:		92 to 100		A		
An alternative module rat		82 to 91		В		
assigned when a module		71 to 81		С		
inappropriate. An alterna		60 to 70	D			
rating is used when more		48 to 59		ΕΕ		
needed to score one or more data		38 to 47		F		
elements, contamination previously addressed, or		less than 38	<u> </u>	G		
reason to suspect contar				aluation Pen		
ever present at an MRS.		Alternative Module Ratings	No Longer Required			
ever present at an Mixo.			No Known o Explosive			
		EHE MODULE RATING		В		

.

#### CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS. Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	
CWM, explosive configuration either UXO or damaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Explosively configured CWM that are UXO (i.e., CWM/UXO).</li> <li>Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.</li> </ul>	
CWM mixed with UXO	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO.</li> </ul>	25
CWM, explosive configuration that are undamaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.</li> </ul>	20
CWM, not explosively configured or CWM, bulk container	The CWM known or suspected of being present at the MRS is: • Nonexplosively configured CWM/DMM. • Bulk CWM/DMM (e.g., ton container).	15
CAIS K941 and CAIS K942     The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M-2/E11.		12
CAIS (chemical agent identification sets)	<ul> <li>Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.</li> </ul>	10
Evidence of no CWM	<ul> <li>Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.</li> </ul>	0
CWM CONFIGURATION	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI Report). Tables 12-19 have been omitted.

Determini	Table 20         ng the CHE Module Rating		<u></u>		
		Source	Score	Value	
DIRECTIONS:	CWM Hazard Factor Data Eleme	nts			
DIRECTIONS.	CWM Configuration	Table 11	0		
<ol> <li>From Tables 11–19, record the data element scores in the</li> </ol>	Sources of CWM	Table 12	0	0	
Score boxes to the right.	Accessibility Factor Data Element	nts		1	
2. Add the Score boxes for each	Location of CWM	Table 13	0		
of the three factors and record this number in the <b>Value</b> boxes to the right.	Ease of Access	Table 14	0	0	
	Status of Property	Table 15	0		
<ol><li>Add the three Value boxes and record this number in the CHE</li></ol>	Receptor Factor Data Elements		L	L	
Module Total box below.	Population Density	Table 16	0		
<ol> <li>Circle the appropriate range for the CHE Module Total below.</li> </ol>	Population Near Hazard	Table 17	0		
	Types of Activities/ Structures	Table 18	0	0	
<ol><li>Circle the CHE Module Rating that corresponds to the range</li></ol>	Ecological and /or Cultural Resources	Table 19	0		
selected and record this value in the CHE Module Rating box	CHE MODULE TOTAL 0			0	
found at the bottom of the table.	CHE Module Total	dule Total CHE Module Ratii			
Note:	92 to 100	A			
An alternative module rating may be	82 to 91		<u>B</u>		
assigned when a module letter rating is	<u>71 to 81</u>		C		
inappropriate. An alternative module	60 to 70		D		
rating is used when more information is	48 to 59		<u> </u>		
needed to score one or more data	38 to 47		F G		
elements, contamination at an MRS was	less than 38	Eve	duation Pen	dina	
previously addressed, or there is no					
reason to suspect contamination was ever present at an MRS.	Alternative Module Ratings	No Longer Required No Known or Suspected CWM Hazard			
	CHE MODULE RATING	No Known or			

•

-

#### HHE Module: Groundwater Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L) Comparison Value (µg/L)			
CHF > 100	H (High)	Maximum Concentration of C	Contaminant]	
100 > CHF > 2	M (Medium)	$CHF = \sum_{\text{[Comparison Value for Cont}} [Comparison Value for Cont]$		
2 > CHF	L (Low)		aminang	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	e from above in the box to the right		
HALANDTAOTON	Migratory Pathy	vay Eactor		
	e value that corresponds most closely to	o the groundwater migratory pathway at the N		
Classification	Description Value			
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of exposed to point of exposed to a point of exposed to a point of	Н		
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
	Receptor F	actor		
	· · ·	the groundwater receptors at the MRS.		
Classification	· · · · · · · · · · · · · · · · · · ·	cription	Value	
Identified	<ul> <li>There is a threatened water supply well downgradient of the source and the groundwater is a current</li> <li>source of drinking water or source of water for other beneficial uses such as irrigation/agriculture</li> <li>(equivalent to Class I or IIA aguifer).</li> </ul>			
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).			
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).			
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value	<u>hest value</u> from above in the box to the = H).		
	No Kno	own or Suspected Groundwater MC Hazard	~	

Groundwater is not present (2007 SI Section 5.12.4

#### HHE Module: Surface Water – Human Endpoint Data Element Table Contaminant Hazard Factor (CHE)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
	<u> </u>				
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100	H (High)				
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Conc$	ntaminantj		
2 > CHF	L (Low)	[Comparison Value for Contai	minant]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right			
DIRECTIONS: Circle the Classification	Des	o the surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathway at the formation is a surface water migratory pathwater migratory pathway at the formation is a surface water migra	VIRS. Value		
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
	Receptor F ne value that corresponds most closely to	actor the surface water receptors at the MRS.			
Classification		cription	Value		
Identified	Identified receptors have access to surface water to which contamination has moved or can move.				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value				
	No Known or Suspected Su	Irface Water (Human Endpoint) MC Hazard	1		

As the MRS is connected to the Atlantic Ocean, any MC would be diluted. (2007 SI Report Section 5.12.5)

DIRECTIONS: Record values Calcula compa additior record	(from Appendix B) in the table below. Ac the and record the <b>ratios</b> for each contaminator <b>rison value</b> . Determine the <b>CHF</b> by add that contaminants recorded on Table 27.	Endpoint Data Element Table <u>I Factor (CHF)</u> ntaminants in the site's sediment and their co diditional contaminants can be recorded on T ainant by dividing the maximum concentrati ing the ratios for each medium together, inc Based on the CHF, use the CHF Scale to de suspected MC hazard for human endpoints par	able 27. <b>on</b> by the luding termine and			
Contaminant	Maximum Concentration (mg/kg) Comparison Value (mg/kg) R					
· · · · · · · · · · · · · · · · · · ·						
H= - H=						
CHF Scale	CHF Value	Sum The Ratios				
CHF > 100	H (High)		ntaminant]			
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Conc$	Intarininanti			
2 > CHF	L (Low)	[Comparison Value for Conta	minant]			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> maximum value = H).	from above in the box to the right				
	Migratory Pathw	vav Factor				
DIRECTIONS: Circle th		the sediment migratory pathway at the MRS	i. –			
Classification		cription	Value			
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expos	ure.	Н			
Potential	Contamination in sediment has moved only slight but is not moving appreciably, or information is no Confined.	tly beyond the source (i.e., tens of feet), could move ot sufficient to make a determination of Evident or	м			
Confined		ant migration from the source via the sediment to a ence of geological structures or physical controls).	L			
MIGRATORY		nest value from above in the box to the				
PATHWAY FACTOR	right (maximum value =					
	Receptor F					
	e value that corresponds most closely to	•				
Classification		cription	Value			
Identified	Identified receptors have access to sediment to which contamination has moved or can move.					
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move. M					
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single hig</u> the right (maximum val	h <u>est value</u> from above in the box to ue = H).				
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard	~			

It is unlikely that elevated concentrations of MC would present in sediment in the ocean. (2007 SI report Section 5.12.5) I

#### HHE Module: Surface Water – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (μg/L) Comparison Value (μg/L)				
			<u></u>		
			·····		
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)				
100 > CHF > 2	M (Medium)	$CHF = \sum $ [Maximum Concentration of C	ontaminantj		
2 > CHF	L (Low)	[Comparison Value for Conta	iminant]		
CONTAMINANT HAZARD FACTOR					
	Migratory Pathy	vay Factor			
		the surface water migratory pathway at the	MRS. Value		
Classification	Description				
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY	DIRECTIONS: Record the single highest value from above in the box to the				
PATHWAY FACTOR	right (maximum value = H).				
	Receptor F				
	· · ·	the surface water receptors at the MRS.	Value		
Identified		r to which contamination has moved or can move.	H		
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value	<u>hest value</u> from above in the box to the = H).			
	No Known or Suspected Surfa	ce Water (Ecological Endpoint) MC Hazard	✓		

As the MRS is connected to the Atlantic Ocean, any MC would be diluted. (2007 SI Report Section 5.12.5)

DIRECTIONS: Record values Calcula compa addition record	<u>Contaminant Hazar</u> the maximum concentrations of all co (from Appendix B) in the table below. A te and record the ratios for each contain rison value. Determine the CHF by ad hal contaminants recorded on Table 27.	al Endpoint Data Element Table <u>d Factor (CHF)</u> ontaminants in the MRS's sediment and their additional contaminants can be recorded on T minant by dividing the maximum concentration ding the ratios for each medium together, inco Based on the CHF, use the CHF Scale to des suspected MC hazard for ecological endpoint	able 27. i <b>on</b> by the luding etermine and		
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios		
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)M (Medium) $CHF = \sum$				
100 > CHF > 2 2 > CHF	M (Medium) L (Low)	[Comparison Value for Conta	minantl		
CONTAMINANT HAZARD FACTOR	CONTAMINANT DIRECTIONS: Record the CHF Value from above in the box to the right				
DIRECTIONS: Circle th	Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.				
Classification Description					
Evident Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.			н		
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined		nant migration from the source via the sediment to a ence of geological structures or physical controls).	L		
MIGRATORY         DIRECTIONS:         Record the single highest value from above in the box to the right (maximum value = H).					
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS. Classification Description					
Identified	Description         Value           Identified receptors have access to sediment to which contamination has moved or can move.         H				
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.				
RECEPTOR FACTOR	RECEPTOR DIRECTIONS: Record the single highest value from above in the box to the				
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard	✓		

It is unlikely that elevated concentrations of MC would present in sediment in the ocean. (2007 SI report Section 5.12.5) I

	Table	_ <b>-</b>				
HHE Module: Surface Soil Data Element Table <u>Contaminant Hazard Factor (CHF)</u>						
DIRECTIONS: Record t		ntaminants in the MRS's surface soil and the	ir			
		able below. Additional contaminants can be r	ecorded on			
		ach contaminant by dividing the <b>maximum</b> ermine the CHF by adding the <b>ratios</b> for each	n medium			
together	, including additional contaminants reco	orded on Table 27. Based on the CHF, use the	ne CHF			
	determine and record the CHF Value. ace soil, select the box at the bottom of	If there is no known or suspected MC hazard the table.	d present in			
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio			
CHF Scale	CHF Value	Sum the Ratios				
CHF > 100	H (High)     CHF = [Maximum Concentration of Con					
100 > CHF > 2	M (Medium)					
2 > CHF     L (Low)   [Comparison Value for Containing in the containing i						
CONTAMINANT         DIRECTIONS: Record the CHF Value         from above in the box to the right (maximum value = H).			-			
	Migratory Pathy		20			
Classification		o the surface soil migratory pathway at the Mi scription	אס. Value			
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.					
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.					
Confined		ninant migration from the source via the surface soil to resence of geological structures or physical controls).	L			
MIGRATORY PATHWAY FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).					
	Receptor F					
DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.						
Classification	Description         Value           Identified receptors have access to surface soil to which contamination has moved or can move.         Identified receptors have access to surface soil to which contamination has moved or can move.					
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.					
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.					
RECEPTOR FACTOR	<b>RECEPTOR FACTOR</b> DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).					
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard	~			

The MRS is underwater, soils are not anticipated to be contaminated with MC (2007 SI report Section 5.12.5)

4 HZ - 4

Ŧ

. . . . . . .

- · · · ·	Table 27 Diemental Contaminant Ha Intaminant Hazard Factor (CHF)		
Only use this table if there supplemental table designed Indicate the media in which t maximum concentrations a Calculate and record the rati	are more than five contaminant to hold information about contami hese contaminants are present. I ind their comparison values that o for each containinant by dividing ne the CHF for each medium on	spresent at the MRS. This name that do not lit in the pro- hen record all contaminants n Abbendix B) in the table be The maximum concentrations appropriate media-specific	s, their low. on by the
 -			<u></u>
 	······		
	······		

____

_

#### **Determining the HHE Module Rating**

#### DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).

Using the reference provided below, determine each media's rating (A--G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value		Three-Letter Combination (Hs-Ms-Ls)		Media Rating (A-G)
Groundwater (Table 21)							
Surface Water/Human Endpoint (Table 22)	-	-	-		-	:::ä	-
Sediment/Human Endpoint (Table 23)	-	-	-	1	-		-
Surface Water/Ecological Endpoint (Table 24)	-	-	-		-		-
Sediment/Ecological Endpoint (Table 25)	-	-	-		-		-
Surface Soil (Table 26)				,			-

#### DIRECTIONS (cont.):

**^** 

3. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

#### Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

in the second

#### HHE MODULE RATING

#### HHE Ratings (for reference only)

Combination	Rating	
ННН	A	
ННМ	В	
HHL		
НММ	C	
HML		
MMM	D	
HLL	_	
MML	E	
MLL	F	
LLL	G	
	Evaluation Pending	
	No Longer Required	
Alternative Module Ratings	No Known or Suspected MC Hazard	

MRS 12 is an underwater MRS that is hydrologically connected to the Atlantic Ocean. The ocean would dilute MC; therefore, a no known or suspected MC Hazard.

MRS 12 - Page - 21

#### Table 29 MRS Priority

- **DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the **MRS or Alternative Priority** box at the bottom of the table.
- **Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
	<b></b>	A	1		
A	2	В	2	А	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	Е	5	D	5
Ε	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Pending	Evaluation	Pending	Evaluation Pending	
No Longer	Required	No Longer Required		No Longer Required	
No Known or Sus Haz		No Known or Suspected CWM Hazard		No Known or Suspected MC Hazard	
				3	

**MRSPP** Evaluation

.

**MRS 13** 

--

This page intentionally left blank.

.

.

.

ł

-

\$

#### Table A MRS Background Information

**DIRECTIONS:** Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS 13 - Cayo Luis Pena Impact Area

**Component: US Marines** 

Installation/Property Name: Culebra Island

Location (City, County, State):Culebra, Puerto Rico

Site Name (RMIS ID)/Project Name (Project No.): MRS 13 Cayo Luis Pena Impact Area (I02PR006813)

#### Date Information Entered/Updated: January 2007/April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

	✓SI		□ FS	
C RA-C		RA-O		

#### Media Evaluated (check all that apply):

	Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

#### MRS Summary:

(

(

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 13 is approximately 864 acres which is comprised of 342 acres of land and the rest encompasses the surrounding waters, located approximately ¼ mile along the western coast of Culebra. Cayo Luis Pena was used as a firing target during Marine exercises conducted between 1924 and 1941.

Description of Pathways for Human and Ecological Receptors:

Soils on the MRS were sampled as this is considered the most likely location for MC. Access to the site is unrestricted. Description of Receptors (Human and Ecological):

The island is managed by the USFWS as part of the Culebra National Wildlife Refuge. Recreational users frequent the area.

#### EHE Module: Munitions Type Data Element Table

**DIRECTIONS:** Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with <u>all</u> munitions types known or suspected to be present at the MRS.

Note: The terms practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20
High explosive (unused)	All DMM containing a high explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are:	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	30

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

75mm projectiles 155mm, 37mm, 8-inch and 6-inch rounds may have been fired at the Cay (Section 2.4.1.12 and Appendix J of the 2007 SI Report). The 2005 INPR briefly cites that one historical document that indicates that napalm was dropped on the area; however, no further documentation regarding this incident could be found. The munitions are rated as sensitive as the 75mm projectiles could potentially contain white phosphorus fillers.

}

١

# Table 2 EHE Module: Source of Hazard Data Element Table

**DIRECTIONS:** Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Scor
Former range	<ul> <li>The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas.</li> </ul>	10
Former munitions treatment (i.e., OB/OD) unit	<ul> <li>The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.</li> </ul>	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	<ul> <li>The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.</li> </ul>	5
Former burial pit or other disposal area	<ul> <li>The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.</li> </ul>	5
Former industrial operating facilities	<ul> <li>The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.</li> </ul>	4
Former firing points	<ul> <li>The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.</li> </ul>	4
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA)     emplacement not associated with a military range.	2
Former storage or transfer points	<ul> <li>The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).</li> </ul>	2
Former small arms range	<ul> <li>The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	0
SOURCE OF HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

#### EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS.
 Note: The terms *surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Scor
Confirmed surface	<ul> <li>Physical evidence indicates that there are UXO or DMM on the surface of the MRS</li> <li>Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS.</li> </ul>	25
Confirmed subsurface, active	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> </ul>	20
Confirmed subsurface, stable	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> </ul>	15
Suspected (physical evidence)	<ul> <li>There is physical evidence (e.g., munitions debris, such fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.</li> </ul>	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	<ul> <li>There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.</li> </ul>	2
Small arms (regardless of location)	<ul> <li>The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	0
LOCATION OF MUNITIONS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	10

Table 4.2 of the 2007 SI Report states that MD was found on the site.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.
 Note: The term barrier is defined in Appendix C of the Primer.

Classification Score Description There is no barrier preventing access to any part of the MRS (i.e., all ٠ 10 No barrier parts of the MRS are accessible). There is a barrier preventing access to parts of the MRS, but not the ٠ Barrier to MRS access is entire MRS. 8 incomplete ٠ There is a barrier preventing access to all parts of the MRS, but there Barrier to MRS access is is no surveillance (e.g., by a guard) to ensure that the barrier is 5 complete but not monitored effectively preventing access to all parts of the MRS. There is a barrier preventing access to all parts of the MRS, and there ٠ is active, continual surveillance (e.g., by a guard, video monitoring) to Barrier to MRS access is ensure that the barrier is effectively preventing access to all parts of 0 complete and monitored the MRS. DIRECTIONS: Record the single highest score from above in the box EASE OF ACCESS 10 to the right (maximum score = 10). DIRECTIONS: Document any MRS-specific data used in selecting the Ease of Access classification in the space provided. Although the vegetation is restrictive, there are no fences or physical barriers on site (2007 SI Report Paragraph 5.13.3.1,

EHE Module: Status of Property Data Element Table DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.		
Classification	Description	Score
Non-DoD control	<ul> <li>The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies.</li> </ul>	5
Scheduled for transfer from DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.	3
DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

cayos was excessed to the Department of the Interior or transferred to the government of Puerto Rico. The lands are currently managed by USFWS as the Culebra National Wildlife Refuge.

e

1

# Table 6 EHE Module: Population Density Data Element Table

**DIRECTIONS:** Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

**Note:** If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

Classification	Description	Score
> 500 persons per square mile	<ul> <li>There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	5
100–500 persons per square mile	<ul> <li>There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.	1
POPULATION DENSITY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <i>Population Density</i> classification in	the space
Section 2.2.7 of the 2007 SI not obtained from Census 2000.	es that the population density of the municipality of Culebra is 71.8 persons pe	er mile, as

#### EHE Module: Population Near Hazard Data Element Table

**DIRECTIONS:** Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	• There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	• There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	<ul> <li>There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	1
0 inhabited structures	<ul> <li>There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	0
POPULATION NEAR HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

MRS 13 is located within a two-mile radius surrounding the Municipality of Culebra which has just under 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

#### EHE Module: Types of Activities/Structures Data Element Table

**DIRECTIONS:** Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term inhabited structure is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	• Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.	5
Parks and recreational areas	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.</li> </ul>	4
Agricultural, forestry	• Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
Industrial or warehousing	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.</li> </ul>	2
No known or recurring activities	<ul> <li>There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.</li> </ul>	1
TYPES OF ACTIVITIES/STRUCTURES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

MRS 13 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

#### EHE Module: Ecological and/or Cultural Resources Data Element Table

**DIRECTIONS:** Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

are both ecological and cultural resources present on the MRS. are ecological resources present on the MRS.	5 <b>3</b>
	3
are cultural resources present on the MRS.	3
are no ecological resources or cultural resources present on the	0
NS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3
(	are no ecological resources or cultural resources present on the NS: Record <u>the single highest score</u> from above in the box to the right (maximum score ≈ 5). fic data used in selecting the <i>Ecological and/or Cultural Resource</i>

The MRS is located within a USFWS refuge that is utilized by various species of birds. No cultural resources are reported on the site (2007 SI (Section 2.2.6) and the 2007 SSWP.)

Determini	Table 10         ng the EHE Module Rating			
		Source	Score	Value
DIRECTIONS:	Explosive Hazard Factor Data El	ements		
	Munitions Type	Table 1	30	10
<ol> <li>From Tables 1–9, record the data element scores in the</li> </ol>	Source of Hazard	Table 2	10	40
Score boxes to the right.	Accessibility Factor Data Elemen	nts		
2. Add the <b>Score</b> boxes for each	Location of Munitions	Table 3	10	
of the three factors and record this number in the <b>Value</b> boxes	Ease of Access	Table 4	10	25
to the right.	Status of Property	Table 5	5	
<ol><li>Add the three Value boxes and record this number in the EHE</li></ol>	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 6	1	
4. Circle the appropriate range for the EHE Module Total below.	Population Near Hazard	Table 7	5	
	Types of Activities/ Structures	Table 8	5	14
5. Circle the EHE Module Rating	Ecological and /or Cultural Resources	Table 9	3	
that corresponds to the range selected and record this value in the EHE Module Rating box	EHE MODULE TOTAL 79			79
found at the bottom of the table.	EHE Module Total	EHE	Module R	ating
Note:	92 to 100		A	
An alternative module rating may be	82 to 91		<u> </u>	
assigned when a module letter rating is nappropriate. An alternative module	71 to 81 60 to 70	<b>C</b>		
rating is used when more information is	48 to 59		Ē	
needed to score one or more data	38 to 47		<u>F</u>	······································
elements, contamination at an MRS was	less than 38		G	
previously addressed, or there is no		Eva	aluation Pen	ding
reason to suspect contamination was	Alternative Module Ratings	No Longer Required		
ever present at an MRS.		No Known or Suspected Explosive Hazard		
	EHE MODULE RATING	с		

----

.

# Table 11 CHE Module: CWM Configuration Data Element Table

**DIRECTIONS:** Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, explosive configuration either UXO or damaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Explosively configured CWM that are UXO (i.e., CWM/UXO).</li> <li>Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.</li> </ul>	30
CWM mixed with UXO	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO.</li> </ul>	25
CWM, explosive configuration that are undamaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.</li> </ul>	20
CWM, not explosively configured or CWM, bulk container	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Nonexplosively configured CWM/DMM.</li> <li>Bulk CWM/DMM (e.g., ton container).</li> </ul>	15
CAIS K941 and CAIS K942	<ul> <li>The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942- toxic gas set M-2/E11.</li> </ul>	12
CAIS (chemical agent identification sets)	<ul> <li>Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.</li> </ul>	10
Evidence of no CWM	<ul> <li>Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.</li> </ul>	0
CWM CONFIGURATION	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0
DIRECTIONS: Document any MRS-sp provided.		ns in the space

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 Report). Tables 12-19 have been omitted.

Determinir	Table 20 ng the CHE Module Rating			
		Source	Score	Value
DIRECTIONS:	CWM Hazard Factor Data Eleme	nts		
	CWM Configuration	Table 11	0	
<ol> <li>From Tables 11–19, record the data element scores in the</li> </ol>	Sources of CWM	Table 12	0	0
Score boxes to the right.	Accessibility Factor Data Element	nts		
2. Add the <b>Score</b> boxes for each	Location of CWM	Table 13	0	
of the three factors and record this number in the Value boxes	Ease of Access	Table 14	0	0
to the right.	Status of Property	Table 15	0	
3. Add the three Value boxes and record this number in the CHE	Receptor Factor Data Elements			
Module Total box below.	Population Density	Table 16	0	
4. Circle the appropriate range for	Population Near Hazard	Table 17	0	0
the CHE Module Total below.	Types of Activities/ Structures	Table 18	0	0
5. Circle the <b>CHE Module Rating</b> that corresponds to the range	Ecological and /or Cultural Resources	Table 19	0	
selected and record this value in the CHE Module Rating box	CHE MODULE TOTAL 0			0
found at the bottom of the table.	CHE Module Total	CHE Module Rating		ating
Note:	92 to 100		A	
An alternative module rating may be	82 to 91	<u> </u>	В	······
assigned when a module letter rating is	71 to 81	<u> </u>		
inappropriate. An alternative module	60 to 70 48 to 59		D E	
rating is used when more information is	38 to 47	F		<u> </u>
needed to score one or more data	less than 38	G		
elements, contamination at an MRS was		Evaluation Pending		ding
previously addressed, or there is no	Alternative Module Ratings	No Longer Required		
reason to suspect contamination was ever present at an MRS.		No Known or Suspected CWM Hazard		
	CHE MODULE RATING	No Known or		'M

······································	Table	21			
	HHE Module: Groundwate <u>Contaminant Hazar</u> the maximum concentrations of all co	r Data Element Table <u>I Factor (CHF)</u> Intaminants in the MRS's groundwater and the			
Table 2 concer togethe Scale t	27. Calculate and record the ratios for each tration by the comparison value. Detern including additional contaminants record.	ble below. Additional contaminants can be reach contaminant by dividing the <b>maximum</b> ermine the <b>CHF</b> by adding the <b>ratios</b> for each rded on Table 27. Based on the <b>CHF</b> , use the lift there is no known or suspected MC hazard	medium e CHF		
Ŭ	rather than total, metals analyses when t				
Contaminant	Maximum Concentration ( $\mu$ g/L)	Comparison Value (µg/L)	<b>Ratios</b>		
CHF > 100	H (High)	CHE = <b>S</b> [Maximum Concentration of Conc	ontaminant]		
100 > CHF > 2	H (High)     CHF =     [Maximum Concentration of Contaminant]       M (Medium)     [Comparison Value for Contaminant]				
2 > CHF	L (Low)				
CONTAMINANT HAZARD FACTOR	<b>DIRECTIONS:</b> Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).				
	Migratory Pathw	vay Factor			
DIRECTIONS: Circle th Classification	. ,	the groundwater migratory pathway at the M cription	RS. Value		
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expos	that contamination in the groundwater is present at, ure.	н		
Potential		ightly beyond the source (i.e., tens of feet), could on is not sufficient to make a determination of Evident	М		
Confined	Information indicates a low potential for contamir a potential point of exposure (possibly due to get	ant migration from the source via the groundwater to logical structures or physical controls).	L		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	n <u>est value</u> from above in the box to the = H),			
DIRECTIONS: Circle th	Receptor Faceptor Fac				
Classification	. ,	cription	Value		
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture H (equivalent to Class I or IIA aguifer).				
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB M aquifer).				
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).				
RECEPTOR FACTOR	RECEPTOR DIRECTIONS: Record the single highest value from above in the box to the				
	No Kno	wn or Suspected Groundwater MC Hazard			

Per TPP concurrence, no groundwater samples were collected as part of the SI.

MRS 13 - Page - 14

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

	Table	22		
DIRECTIONS: Record	Module: Surface Water – Huma <u>Contaminant Hazar</u> the maximum concentrations of all co arison values (from Appendix B) in the ta	an Endpoint Data Element Table <u>d Factor (CHF)</u> ntaminants in the MRS's surface water and the able below. Additional contaminants can be n		
conce togeth Scale endpo	ntration by the comparison value. Determined by the comparison value. Determined by the comparison value.		ne CHF	
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)			
100 > CHF > 2	M (Medium)	CHF =[Maximum Concentration of Co	ontaminant]	
2 > CHF	L (Low) [Comparison Value for Contaminant]			
CONTAMINANT         DIRECTIONS:         Record the CHF Value         from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle t	· · · ·	o the surface water migratory pathway at the I	VIRS. Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at,			
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could			
Confined		ant migration from the source via the surface water to sence of geological structures or physical controls).	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	hest value from above in the box to the = H).		
	Receptor F			
	<u>Des</u>	o the surface water receptors at the MRS. cription	Value	
Identified	Identified receptors have access to surface water to which contamination has moved or can move.			
Potential	Potential for receptors to have access to surface water to which contamination has moved or can M			
Little or polynomial for recentors to have access to surface water to which contamination has moved			L	
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value			
	No Known or Suspected Su	Inface Water (Human Endpoint) MC Hazard		

Per TPP concurrence, no surface water samples were collected as part of the SI

	Table	23			
НН	IE Module: Sediment – Human I				
	Contaminant Hazard	Factor (CHF)	•		
		ntaminants in the site's sediment and their <b>c</b> Iditional contaminants can be recorded on T			
		inant by dividing the maximum concentrat			
compa	rison value. Determine the CHF by add	ing the ratios for each medium together, inc	luding		
		Based on the CHF, use the CHF Scale to de uspected MC hazard for human endpoints p			
	nt, select the box at the bottom of the tab		resent in the		
			Ratios		
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios		
			,		
	· · · · · · · · · · · · · · · · · · ·		, ,		
			<u> </u>		
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100					
100 > CHF > 2		$HF = \sum \frac{[Maximum Concentration of Con}{[Comparison Value for Contam}$	inont		
2 > CHF	L (Low)				
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> maximum value = H).	from above in the box to the right			
	Migratory Pathw		<u> </u>		
Classification		the sediment migratory pathway at the MRS cription	o. Value		
Evident	Analytical data or observable evidence indicates		H		
	moving toward, or has moved to a point of expose	ure. Iy beyond the source (i.e., tens of feet), could move			
Potential		of sufficient to make a determination of Evident or	M		
Confined	Information indicates a low potential for contamin potential point of exposure (possibly due to prese	ant migration from the source via the sediment to a nee of geological structures or physical controls).	L		
MIGRATORY	DIRECTIONS: Record the single high				
PATHWAY FACTOR	right (maximum value =				
DIRECTIONS: Circle th	Receptor Fa e value that corresponds most closely to				
Classification		-	Value		
Identified	Description         Value           Identified receptors have access to sediment to which contamination has moved or can move.         H				
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or L				
RECEPTOR	DIRECTIONS: Record the single high		H		
FACTOR	the right (maximum valu	ue = H).			
	No Known an Swanasta	- Codiment / I have a Codecist) MC Hozord			
	NO KNOWN OF SUSPECTED	d Sediment (Human Endpoint) MC Hazard			
Per TPP concurrence no	o sediment samples were collected as pa	rt of the SI.			

MRS 13 - Page - 16

September 2007 Contract W912DY-04-D-0005

#### HHE Module: Surface Water – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)				
100 > CHF > 2	M (Medium)	$CHF = \sum - [Maximum Concentration of Co$	ontaminantj		
2 > CHF	L (Low)	[Comparison Value for Conta	minant]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	e from above in the box to the right			
DIRECTIONS: Circle th Classification	· · ·	vay Factor the surface water migratory pathway at the I cription	MRS. Value		
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
		the surface water receptors at the MRS.	Value		
Classification	Description           Identified receptors have access to surface water to which contamination has moved or can move.				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value =	<b>hest value</b> from above in the box to the = H).			
	No Known or Suspected Surfa	ce Water (Ecological Endpoint) MC Hazard			

Per TPP concurrence, no surface water samples were collected as part of the SI

DIRECTIONS: Record values Calcula compa addition record	<u>Contaminant Haza</u> the maximum concentrations of all c (from Appendix B) in the table below. A ate and record the ratios for each conta <b>trison value</b> . Determine the CHF by ac nal contaminants recorded on Table 27.	al Endpoint Data Element Table rd Factor (CHF) ontaminants in the MRS's sediment and their Additional contaminants can be recorded on T minant by dividing the maximum concentrat Iding the ratios for each medium together, inc Based on the CHF, use the CHF Scale to de suspected MC hazard for ecological endpoint he table.	able 27. ion by the cluding etermine and		
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios		
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100 100 > CHF > 2	H (High) $CHF = \sum$ [Maximum Concentration of ContaminantM (Medium) $CHF = \sum$				
2 > CHF	L (Low) [Comparison Value for Contaminant]				
CONTAMINANT HAZARD FACTOR					
		to the sediment migratory pathway at the MRS			
Classification		scription s that contamination in the sediment is present at,	Value		
Evident Potential		sure. htly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or	н м		
Confined	Information indicates a low potential for contam	inant migration from the source via the sediment to a sence of geological structures or physical controls).	L		
MIGRATORY PATHWAY FACTOR	MIGRATORY DIRECTIONS: Record the single highest value from above in the box to the				
DIRECTIONS: Circle the Classification	Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.				
Identified	Identified receptors have access to sediment to which contamination has moved or can move.				
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or L				
RECEPTOR FACTOR	RECEPTOR DIRECTIONS: Record the single highest value from above in the box to the				
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard			

Per TPP concurrence, no sediment samples were collected as part of the SI.

MRS 13 - Page - 18

compari Table 27 concent together Scale to	ison values (from Appendix B) in the ta 7. Calculate and record the ratios for ex- tration by the comparison value. Detec- , including additional contaminants reco	il Data Element Table <u>d Factor (CHF)</u> ntaminants in the MRS's surface soil and the able below. Additional contaminants can be r ach contaminant by dividing the maximum ermine the CHF by adding the ratios for each orded on Table 27. Based on the CHF, use th If there is no known or suspected MC hazard	ecorded on medium me <b>CHF</b>		
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio		
Aluminum	49000	77000	0.64		
Strontium	58	46000	0.0012		
CHF Scale	CHF Value	Sum the Ratios	0.64		
CHF > 100	H (High)	and the second			
100 > CHF > 2	$CHF = \sum_{i=1}^{n} \frac{1}{1} $				
2 > CHF L (Low) [Comparison Value for Contaminant]					
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle the Classification	Migratory Pathway Factor           DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.           Classification         Description				
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of M Evident or Confined.				
Confined		inant migration from the source via the surface soil to resence of geological structures or physical controls).	L		
MIGRATORY PATHWAY FACTOR	<b>DIRECTIONS:</b> Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle the Classification	Receptor Factor           DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.           Classification         Description         Value				
Identified	Identified receptors have access to surface soil	to which contamination has moved or can move.	Н		
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move. M				
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.				
RECEPTOR FACTOR	<b>ECEPTOR FACTOR</b> DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
No Known or Suspected Sediment (Ecological Endpoint) MC Hazard					

Ambient soil samples collected are used to for metals comparison per TPP concurrence. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score. MPF and RF are rated low given the lack of contamination measured in the soil.

#### HHE Module: Supplemental Contaminant Hazard Factor Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous satisfies. Indicate the media in which these contaminants are present. Then record all contaminants, informaximum concentrations and their comparison values (from Appendix B) in the table below. Catellate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media specific tables. Note: Remember not to add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Soil	Strontium	58	46000	0.001
· · · · · · · · · · · · · · · · · · ·				

September 2007 Contract W912DY-04-D-0005

#### **Determining the HHE Module Rating**

#### **DIRECTIONS:**

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A–G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value		Three-Letter Combination (Hs-Ms-Ls)		Media Rating (A-G)
Groundwater (Table 21)				: : :			
Surface Water/Human Endpoint (Table 22)	-	-	-		-	n de la composition de la comp	-
Sediment/Human Endpoint (Table 23)	-	-	-		-		-
Surface Water/Ecological Endpoint (Table 24)	-	-	-		-		-
Sediment/Ecological Endpoint (Table 25)	-	-	-		-		-
Surface Soil (Table 26)	L	L	L		LLL		G

#### **DIRECTIONS** (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

#### Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

#### HHE MODULE RATING

G

#### HHE Ratings (for reference only)

Combination	Rating
ннн	A
ННМ	В
HHL	
НММ	- C
HML	
MMM	D
HLL	
MML	E
MLL	F
	G
	Evaluation Pending
Alternative Module Ratings	No Longer Required
<b>.</b>	No Known or Suspected MC Hazard

٠.

and dete prior	Table 28 (HHE). C rmine the module ra	Table MRS Pr e the letter rating for e ircle the corresponding ating is not available, c nest priority; record this	iority each module record g numerical priority choose the appropri	r for each module. If ate alternative module	information to e rating. The MRS
priority. Only CWM known	an MRS with CWM or suspected to be	the highest relative pri I known or suspected t present cannot be ass	to be present can be igned Priority 8.	e assigned Priority 1;	an MRS that has
EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	11		
Α	2	В	2	A	2
В	3	С	3	В	3
C	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending		Evaluation Pending		Evaluation Pending	
No Longer Required		No Longer Required		No Longer Required	
	o Known or Suspected Explosive Hazard No Known or Suspected CWM Hazard No Known or Suspect		ected MC Hazard		
	Mł	RS or ALTERNAT	IVE PRIORITY	4	

r

**MRSPP** Evaluation

**MRS 14** 

.

-

-

This page intentionally left blank.

- - - - -

------

نعر

#### Table A MRS Background Information

**DIRECTIONS:** Record the background information below for the MRS to be evaluated. Much of this information is available from DoD databases, such as RMIS. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non-munitions related contaminants found at the MRS (e.g., benzene, trichloroethylene), and any potentially exposed human and ecological receptors. Include a map of the MRS, if one is available.

Munitions Response Site Name: MRS 14 - Airport and Camp Area

**Component: US Marines and US Navy** 

Installation/Property Name: Culebra Island

Location (City, County, State): Culebra, Puerto Rico Airport and Camp Area (I02PR0068143)

#### Date Information Entered/Updated: January 2007 / April 2007

Point of Contact (Name/Phone): Mr. Charles D. Fales, Florida FUDS Manager / (904) 232-1017

Project Phase (check only one):

🖸 PA	✓SI		GFS	
🛛 RA-C		RA-0		

#### Media Evaluated (check all that apply):

	Sediment (human receptor)
✓ Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

#### MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM (by type of munition, if known) or munitions constituents (by type, if known) known or suspected to be present):

Culebra Island and the surrounding cays and cayos was used for aerial bombing, maneuvers, artillery firing, and amphibious training by the US Navy and Marines between 1902 and 1975. Many different training operations were conducted at this site and complete records are not available to designate specific ranges or range complexes. As such, the Island of Culebra and surrounding cays and cayos were divided into 14 munitions response sites (MRS) based on the islands geography and historic military use. MRS 14 consists of approximately 416 acres of land at the north end of Great Harbor. This area includes the airport and the Former Camp Idelfonso. The Navy and Marine Corps air field and most of their encampments were located in this area. Small arms ranges were also associated with this site.

Description of Pathways for Human and Ecological Receptors:

Soils on the MRS were sampled as this is considered the most likely location for MC. Access to the site is unrestricted. Description of Receptors (Human and Ecological):

The area is frequented by recreational users, workers and residents. The shoreline is managed by the USFWs and is used by various bird species.

# Table 1 EHE Module: Munitions Type Data Element Table

**DIRECTIONS:** Below are 11 classifications of munitions and their descriptions. Circle the score(s) that correspond with <u>all</u> munitions types known or suspected to be present at the MRS.

Note: The terms practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

	Description	Score
Sensitive	All UXO that are considered likely to function upon any interaction with exposed persons [e.g., submunitions, 40mm high-explosive (HE) grenades, white phosphorus (WP) munitions, high-explosive antitank (HEAT) munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions]. All hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard.	30
High explosive (used or damaged)	All UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." All DMM containing a high-explosive filler that have: Been damaged by burning or detonation Detenorated to the point of instability.	25
Pyrotechnic (used or damaged)	All UXO containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades). All DMM containing pyrotechnic fillers other than white phosphorous (e.g., flares, signals, simulators, smoke grenades) that have:	20
High explosive (unused)	All DMM containing a high explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	15
Propellant	All UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are:	15
Bulk secondary high explosives, pyrotechnics, or propellant	All DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor), that are deteriorated. Bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard.	10
Pyrotechnic (not used or damaged)	All DMM containing a pyrotechnic fillers (i.e., red phosphorous), other than white phosphorous filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	10
Practice	All UXO that are practice munitions that are not associated with a sensitive fuze. All DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability.	5
Riot control	All UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	All used munitions or DMM that are categorized as small arms ammunition [Physical evidence or historical evidence that no other types of munitions (e.g., grenades, subcaliber training rockets, demolition charges) were used or are present on the MRS is required for selection of this category.].	2
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
MUNITIONS TYPE	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	2

#### EHE Module: Source of Hazard Data Element Table

**DIRECTIONS:** Below are 11 classifications describing sources of explosive hazards. Circle the score(s) that correspond with <u>all</u> sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	<ul> <li>The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include: impact or target areas, associated buffer and safety zones, firing points, and live-fire maneuver areas.</li> </ul>	10
Former munitions treatment (i.e., OB/OD) unit	<ul> <li>The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.</li> </ul>	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	<ul> <li>The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.</li> </ul>	5
Former burial pit or other disposal area	<ul> <li>The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.</li> </ul>	5
Former industrial operating facilities	<ul> <li>The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.</li> </ul>	4
Former firing points	<ul> <li>The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.</li> </ul>	4
Former missile or air defense artillery emplacements	<ul> <li>The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.</li> </ul>	2
Former storage or transfer points	<ul> <li>The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).</li> </ul>	2
Former small arms range	<ul> <li>The MRS is a former military range where only small arms ammunition was used [There must be evidence that no other types of munitions (e.g., grenades) were used or are present to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	0
SOURCE OF HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	1
provided.	RS-specific data used in selecting the <i>Source of Hazard</i> classifications in the arms range may have been located on this site. (Section 4.14 and Appendix	

#### EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the score(s) that correspond with <u>all</u> locations where munitions are located or suspected of being found at the MRS.
 Note: The terms *surface*, *subsurface*, *physical evidence*, and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	<ul> <li>Physical evidence indicates that there are UXO or DMM on the surface of the MRS</li> <li>Historical evidence (e.g., a confirmed incident report or accident report) indicates there are UXO or DMM on the surface of the MRS.</li> </ul>	25
Confirmed subsurface, active	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heat heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM.</li> </ul>	20
Confirmed subsurface, stable	<ul> <li>Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed.</li> <li>Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed.</li> </ul>	15
Suspected (physical evidence)	<ul> <li>There is physical evidence (e.g., munitions debris, such fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS.</li> </ul>	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	<ul> <li>There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.</li> </ul>	2
Small arms (regardless of location)	<ul> <li>The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability [There must be evidence that no other types of munitions (e.g., grenades) were used or are present at the MRS to place an MRS into this category.].</li> </ul>	1
Evidence of no munitions	<ul> <li>Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.</li> </ul>	0
LOCATION OF MUNITIONS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	1

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Historical records indicate a small arms range may have been located on this site. (Section 4.14 and Appendix J of the 2007 SI Report).

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to any explosive materiel. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	<ul> <li>There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).</li> </ul>	10
Barrier to MRS access is incomplete	<ul> <li>There is a barrier preventing access to parts of the MRS, but not the entire MRS.</li> </ul>	8
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	<ul> <li>There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.</li> </ul>	0
EASE OF ACCESS	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <i>Ease of Access</i> classification in the s	pace
	a that includes an airport with both commercial and private use, There are no for 07 SI Report Paragraph 5.14.3.1).	ences or

.

## Table 5 EHE Module: Status of Property Data Element Table

**DIRECTIONS:** Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Description	Score
<ul> <li>The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies.</li> </ul>	5
• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.	3
• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
	<ul> <li>The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies.</li> <li>The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the rule is applied.</li> <li>The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.</li> </ul>

Section 2.3 of the 2007 SI notes that all of the land acquired by the military on Culebra and the surrounding cays and cayos was excessed to the Department of the Interior or transferred to the government of Puerto Rico. The waterline is managed by the PR DNR and USFWS while the rest of the MRS is privately owned or utilized by the Puerto Rico DNR.

MRS 14 - Page - 6

September 2007 Contract W912DY-04-D-0005

Delivery Order 0008

#### EHE Module: Population Density Data Element Table

**DIRECTIONS:** Below are three classifications of population density and their descriptions. Determine the population density per square mile in the vicinity of the MRS and circle the score that corresponds with the associated population density.

**Note:** If an MRS is located in more than one county, use the largest population density value among the counties. If the MRS is within or borders a city or town, use the population density for the city or town, rather than that of the county.

Classification	Description	Score
> 500 persons per square mile	<ul> <li>There are more than 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	5
100–500 persons per square mile	<ul> <li>There are 100 to 500 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	3
< 100 persons per square mile	<ul> <li>There are fewer than 100 persons per square mile in the county in which the MRS is located, based on U.S. Census Bureau data.</li> </ul>	1
POPULATION DENSITY	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	1

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Population Density* classification in the space provided.

Section 2.2.7 of the 2007 SI notes that the population density of the municipality of Culebra is 71.8 persons per mile, as obtained from Census 2000.

#### EHE Module: Population Near Hazard Data Element Table

**DIRECTIONS:** Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the population near the hazard. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the associated population near the known or suspected hazard.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	<ul> <li>There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	5
16 to 25 inhabited structures	<ul> <li>There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	4
11 to 15 inhabited structures	<ul> <li>There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.</li> </ul>	3
6 to 10 inhabited structures	• There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	2
1 to 5 inhabited structures	• There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

MRS 14 is located within a two-mile radius surrounding the Municipality of Culebra which has just under 2,000 residents and many visitors throughout the year. (2007 SI Section 2.2.7 and Table 2.2).

#### EHE Module: Types of Activities/Structures Data Element Table

**DIRECTIONS:** Below are five classifications of activities and/or inhabited structures near the hazard and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the score(s) that correspond with <u>all</u> the activities/structure classifications at the MRS.

**Note:** The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.</li> </ul>	5
Parks and recreational areas	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.</li> </ul>	4
Agricultural, forestry	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.</li> </ul>	3
Industrial or warehousing	<ul> <li>Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing.</li> </ul>	2
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

MRS 13 is located on the island of Culebra. The island has schools, residential areas, a clinic, an airport, restaurants, hotels, shops, and a few industrial companies. Beaches within a two mile radius are managed by the USFWS or PR DNR for wildlife conservation and recreational use. (2007 SI Report Sections 2.2.7 and 2.2.8)

#### EHE Module: Ecological and/or Cultural Resources Data Element Table

**DIRECTIONS:** Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resource classifications at the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

**DIRECTIONS:** Document any MRS-specific data used in selecting the *Ecological and/or Cultural Resources* classification in the space provided.

The MRS is located within a USFWS refuge that is utilized by various species of birds. Page 5-1 of the SSWP (2006) notes that archeological remnants were discovered in the Lower Camp in 1992. No other cultural resources are reported on the site (2007 SI Section 2.2.6).

MRS 14 - Page - 10

		Source	Score	Value	
DIRECTIONS:	Explosive Hazard Factor Data E	lements			
	Munitions Type	Table 1	2		
<ol> <li>From Tables 1–9, record the data element scores in the Score boxes to the right.</li> </ol>	Source of Hazard	Table 2	1	3	
	Accessibility Factor Data Eleme	nts			
2. Add the <b>Score</b> boxes for each of the three factors and record this number in the <b>Value</b> boxes to the right.	Location of Munitions	Table 3	1		
	Ease of Access	Table 4	10	16	
	Status of Property	Table 5	5		
<ol> <li>Add the three Value boxes and record this number in the EHE</li> </ol>	<b>Receptor Factor Data Elements</b>				
Module Total box below.	Population Density	Table 6	1		
4. Circle the appropriate range for	Population Near Hazard	Table 7	5	16	
the EHE Module Total below.	Types of Activities/ Structures	Table 8	5	16	
5. Circle the EHE Module Rating	Ecological and /or Cultural Resources	Table 9	5		
that corresponds to the range selected and record this value in the EHE Module Rating box	EHE MODULE TOTAL 35				
found at the bottom of the table.	EHE Module Total	EHE Module Ratin		Rating	
Note:	92 to 100		A		
An alternative module rating may be	82 to 91	l	B		
assigned when a module letter rating is	71 to 81	·	C		
inappropriate. An alternative module	<u>60 to 70</u>		D		
rating is used when more information is needed to score one or more data	·····	<u> </u>	<u> </u>		
elements, contamination at an MRS wa	38 to 47	+	F	~~~~	
previously addressed, or there is no	S less than 38		<u> </u>		
reason to suspect contamination was		Evaluation Pending No Longer Required			
ever present at an MRS.	Alternative Module Ratings	No Known or Suspected Explosive Hazard			
	EHE MODULE RATING	1	G		

.7

MRS 14 - Page - 11

_ ____

#### CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the score(s) that correspond to <u>all</u> CWM configurations known or suspected to be present at the MRS.
 Note: The terms *CWM/UXO*, *CWM/DMM*, *physical evidence*, and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, explosive configuration either UXO or damaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS is:</li> <li>Explosively configured CWM that are UXO (i.e., CWM/UXO).</li> <li>Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged.</li> </ul>	30
CWM mixed with UXO	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged, or nonexplosively configured CWM/DMM, or CWM not configured as a munition, that are commingled with conventional munitions that are UXO.</li> </ul>	25
CWM, explosive configuration that are undamaged DMM	<ul> <li>The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.</li> </ul>	20
CWM, not explosively configured or CWM, bulk container	The CWM known or suspected of being present at the MRS is: • Nonexplosively configured CWM/DMM. • Bulk CWM/DMM (e.g., ton container).	15
CAIS K941 and CAIS K942	<ul> <li>The CWM/DMM known or suspected of being present at the MRS is CAIS K941-toxic gas set M-1 or CAIS K942- toxic gas set M-2/E11.</li> </ul>	12
CAIS (chemical agent identification sets)	<ul> <li>Only CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.</li> </ul>	10
Evidence of no CWM	<ul> <li>Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.</li> </ul>	0
CWM CONFIGURATION	<b>DIRECTIONS:</b> Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

There is no historical or anecdotal evidence that CWM were ever used on this MRS. (Sections 2.5 and 4.2 of the 2007 SI Report). Tables 12-19 have been omitted.

MRS 14 - Page - 12

Determinir	Table 20 ng the CHE Module Rating				
		Source	Score	Value	
DIRECTIONS:	CWM Hazard Factor Data Eleme	nts			
	CWM Configuration	Table 11	0		
<ol> <li>From Tables 11–19, record the data element scores in the</li> </ol>	Sources of CWM	Table 12	0	0	
Score boxes to the right.	Accessibility Factor Data Eleme	nts		<u>L</u>	
2. Add the Score boxes for each	Location of CWM	Table 13	0		
of the three factors and record this number in the <b>Value</b> boxes to the right.	Ease of Access	Table 14	0	0	
	Status of Property	Table 15	0		
<ol> <li>Add the three Value boxes and record this number in the CHE</li> </ol>	Receptor Factor Data Elements				
Module Total box below.	Population Density	Table 16	0		
<ol> <li>Circle the appropriate range for the CHE Module Total below.</li> </ol>	Population Near Hazard	Table 17	0		
	Types of Activities/ Structures	Table 18	0	0	
5. Circle the CHE Module Rating that corresponds to the range	Ecological and /or Cultural Resources	Table 19	0		
selected and record this value in the CHE Module Rating box	CHE MODULE TOTAL 0				
found at the bottom of the table.	CHE Module Total	CHE Module Rating			
Note:	92 to 100		А		
An alternative module rating may be	82 to 91		<u> </u>		
assigned when a module letter rating is	71 to 81		<u> </u>		
inappropriate. An alternative module	60 to 70		D E		
rating is used when more information is	48 to 59 38 to 47		<u>E</u> F		
needed to score one or more data	less than 38		G		
elements, contamination at an MRS was		Eva	aluation Pen	dina	
previously addressed, or there is no			Longer Req		
reason to suspect contamination was ever present at an MRS.	Alternative Module Ratings	No Known or Suspected CWN Hazard			
	CHE MODULE RATING	No Known or Suspected CWM Hazard			

---

--

••

#### Table 21 HHE Module: Groundwater Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table. Note: Use dissolved, rather than total, metals analyses when both are available. Contaminant Maximum Concentration (µg/L) Comparison Value (µg/L) Ratios CHF > 100 H (High) [Maximum Concentration of Contaminant] $CHF = \sum_{n=1}^{\infty}$ 100 > CHF > 2 M (Medium) [Comparison Value for Contaminant] 2 > CHF L (Low) CONTAMINANT DIRECTIONS: Record the CHF Value from above in the box to the right HAZARD FACTOR (maximum value = H). **Migratory Pathway Factor DIRECTIONS:** Circle the value that corresponds most closely to the groundwater migratory pathway at the MRS. Classification Description Value Analytical data or observable evidence indicates that contamination in the groundwater is present at, Evident Н moving toward, or has moved to a point of exposure. Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could Potential move but is not moving appreciably, or information is not sufficient to make a determination of Evident Μ or Confined. Information indicates a low potential for contaminant migration from the source via the groundwater to Confined L a potential point of exposure (possibly due to geological structures or physical controls) MIGRATORY DIRECTIONS: Record the single highest value from above in the box to the **PATHWAY FACTOR** right (maximum value = H). **Receptor Factor** DIRECTIONS: Circle the value that corresponds most closely to the groundwater receptors at the MRS. Classification Description Value There is a threatened water supply well downgradient of the source and the groundwater is a current Identified source of drinking water or source of water for other beneficial uses such as irrigation/agriculture н (equivalent to Class I or IIA aquifer). There is no threatened water supply well downgradient of the source and the groundwater is currently Potential or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB Μ aquifer). There is no potentially threatened water supply well downgradient of the source and the groundwater Limited is not considered a potential source of drinking water and is of limited beneficial use (equivalent to L Class IIIA or IIIB aquifer, or where perched aquifer exists only). RECEPTOR DIRECTIONS: Record the single highest value from above in the box to the

Per TPP concurrence, no groundwater samples were collected as part of the SI.

MRS 14 - Page - 14

No Known or Suspected Groundwater MC Hazard

right (maximum value = H).

September 2007 Contract W912DY-04-D-0005

FACTOR

#### HHE Module: Surface Water – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for human endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100	H (High)				
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of Concentration]}{[Maximum Concentration]}$	ntaminantj		
2 > CHF	L (Low)	[Comparison Value for Contai	ninant]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right			
DIRECTIONS: Circle the Classification	• •	vay Factor b the surface water migratory pathway at the ! cription	MRS. Value		
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	nest value from above in the box to the = H).			
DIRECTIONS: Circle th		actor the surface water receptors at the MRS. cription	Value		
Identified		r to which contamination has moved or can move.	H		
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value				
	No Known or Suspected Su	Irface Water (Human Endpoint) MC Hazard			

Per TPP concurrence, no surface water samples were collected as part of the SI

MRS 14 - Page - 15

DIRECTIONS: Record values Calcula compa addition record	(from Appendix B) in the table below. At the and record the <b>ratios</b> for each contaminator <b>rison value</b> . Determine the <b>CHF</b> by additional contaminants recorded on Table 27.	Endpoint Data Element Table <u>I Factor (CHF)</u> Intaminants in the site's sediment and their conditional contaminants can be recorded on T ninant by dividing the maximum concentrat ling the ratios for each medium together, inco Based on the CHF, use the CHF Scale to de suspected MC hazard for human endpoints p	able 27. ion by the luding stermine and
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	$CHF = \sum \frac{[Maximum Concentration of final information]}{[Maximum Concentration]}$	Contaminant]
100 > CHF > 2 2 > CHF	M (Medium) L (Low)	[Comparison Value for Cor	itaminant
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right	
HAZARD FACTOR	maximum value = H).		
DIRECTIONS: Circle th Classification	•	vay Factor the sediment migratory pathway at the MRS cription	S. Value
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expos	that contamination in the sediment is present at,	H
Potential	Contamination in sediment has moved only slight but is not moving appreciably, or information is n Confined.	Ily beyond the source (i.e., tens of feet), could move ot sufficient to make a determination of Evident or	М
Confined	potential point of exposure (possibly due to prese	ant migration from the source via the sediment to a ence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	n <u>est value</u> from above in the box to the = H).	
	Receptor F		
DIRECTIONS: Circle th Classification	e value that corresponds most closely to		Value
Identified	Identified receptors have access to sediment to v	cription which contamination has moved or can move.	Value H
Potential	Potential for receptors to have access to sedimer	nt to which contamination has moved or can move.	M
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum val		<b>`</b> H.
pet in Endly	No Known or Suspected	d Sediment (Human Endpoint) MC Hazard	

Per TPP concurrence no sediment samples were collected as part of the SI.

- NDA PD. MRS 14 - Page - 16

K - 308

September 2007 Contract W912DY-04-D-0005

#### HHE Module: Surface Water – Ecological Endpoint Data Element Table <u>Contaminant Hazard Factor (CHF)</u>

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the surface water, select the box at the bottom of the table.

Note: Use dissolved, rather than total, metals analyses when both are available.

Contaminant	Maximum Concentration (µg/L) Comparison Value (µg/L)				
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)		ontominanti		
100 > CHF > 2	M (Medium)	CHF = $\sum \frac{Maximum Concentration of C}{Maximum Concentration of C}$	ontaminantj		
2 > CHF	L (Low)	[Comparison Value for Conta	iminant]		
CONTAMINANT HAZARD FACTOR	<b>DIRECTIONS:</b> Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).				
	Migratory Pathw				
	•	the surface water migratory pathway at the	MRS. Value		
Classification	Description				
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to presence of geological structures or physical controls).				
MIGRATORY	DIRECTIONS: Record the single highest value from above in the box to the				
PATHWAY FACTOR					
DIRECTIONS OF A	Receptor F				
Classification		the surface water receptors at the MRS.	Value		
		· · · · · · · · · · · · · · · · · · ·	H		
Identified	Identified receptors have access to surface water to which contamination has moved or can move.				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L		
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value =	<u>hest value</u> from above in the box to the = H).			
	No Known or Suspected Surface	ce Water (Ecological Endpoint) MC Hazard			

Per TPP concurrence, no surface water samples were collected as part of the SI

Table 25         HHE Module: Sediment – Ecological Endpoint Data Element Table <u>Contaminant Hazard Factor (CHF)</u> DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard for ecological endpoints present in the sediment, select the box at the bottom of the table.							
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios				
CHF Scale	CHF Value	Sum the Ratios					
CHF > 100		- Maximum Concentration of Cont	aminantl				
100 > CHF > 2	M (Medium)	CHF = $\sum_{i=1}^{i}$ [Maximum Concentration of Cont	amnang				
2 > CHF	L (Low)	[Comparison Value for Contami	nant]				
CONTAMINANT HAZARD FACTOR	<b>DIRECTIONS:</b> Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).						
DIRECTIONS: Circle th	Migratory Path ne value that corresponds most closely t	way Factor to the sediment migratory pathway at the MRS					
Classification	Description Valu						
Evident	Analytical data or observable evidence indicate moving toward, or has moved to a point of expo	s that contamination in the sediment is present at, sure.	н				
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or M Confined.						
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to presence of geological structures or physical controls).						
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value	<pre>ahest value from above in the box to the = H).</pre>					
	Receptor	Factor					
DIRECTIONS: Circle th Classification	DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.						
Identified	Identified receptors have access to sediment to		Н				
Potential	Potential for receptors to have access to sedim	ent to which contamination has moved or can move.	М				
Limited	Little or no potential for receptors to have acces can move.	is to sediment to which contamination has moved or	L				
RECEPTOR FACTOR	DIRECTIONS: Record the single hid right (maximum value	thest value from above in the box to the = H).					
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard					

Per TPP concurrence, no sediment samples were collected as part of the SI.

#### Table 26 HHE Module: Surface Soil Data Element Table **Contaminant Hazard Factor (CHF)** DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum** concentration by the comparison value. Determine the CHF by adding the ratios for each medium together, including additional contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table. Maximum Concentration (mg/kg) Contaminant Comparison Value (mg/kg) Ratio 600 Barium 5300 0.11 120 Copper 2800 0.042 76 Strontium 46000 0.0016 **CHF** Scale **CHF Value** Sum the Ratios 0.15 **CHF** = $\sum_{i=1}^{n}$ [Maximum Concentration of Contaminant] CHF > 100 H (High) 100 > CHF > 2 M (Medium) [Comparison Value for Contaminant] 2 > CHFL (Low) CONTAMINANT DIRECTIONS: Record the CHF Value from above in the box to the right L **HAZARD FACTOR** (maximum value = H) **Migratory Pathway Factor** DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS. Classification Description Value Analytical data or observable evidence indicates that contamination in the surface soil is present at, Evident н moving toward, or has moved to a point of exposure. Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could Potential move but is not moving appreciably, or information is not sufficient to make a determination of Μ Evident or Confined. Information indicates a low potential for contaminant migration from the source via the surface soil to Confined L a potential point of exposure (possibly due to presence of geological structures or physical controls). MIGRATORY DIRECTIONS: Record the single highest value from above in the box to the L right (maximum value = H). **PATHWAY FACTOR Receptor Factor** DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS. Classification Description Value Identified receptors have access to surface soil to which contamination has moved or can move. Identified н Potential for receptors to have access to surface soil to which contamination has moved or can Potential М move Little or no potential for receptors to have access to surface soil to which contamination has moved Limited L or can move DIRECTIONS: Record the single highest value from above in the box to the **RECEPTOR FACTOR** L right (maximum value = H). No Known or Suspected Sediment (Ecological Endpoint) MC Hazard

Ambient soil samples collected are used to for metals comparison per TPP concurrence. Contaminants that are attributable to DoD activities (per Table 4.1 2007 SI Report), with comparison values developed, that exceed the metals comparison values contribute to the score. MPF and RF are rated low given the lack of contamination measured in the soil.

Table 27         HHE Module: Supplemental Contaminant Hazard Factor Table         Contaminant Hazard Factor (CHF)         DIRECTIONS: Only use this table if there are more than five contaminants present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media specific tables.         Note: Remember not to add ratios from different media.								
Media Contaminant Maximum Concentration Comparison Value Ratio								
	o officer mining of a							
		······································						
			<u> </u>					
·····								
		······································						
		·····						
<u></u>								
			i 					

MRS 14 - Page - 20

September 2007 Contract W912DY-04-D-0005

. _____

Delivery Order 0008

#### **Determining the HHE Module Rating**

#### DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway, and Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the reference provided below, determine each media's rating (A–G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)		Media Rating (A-G)
Groundwater (Table 21)						
Surface Water/Human Endpoint (Table 22)	_	-	-	-		-
Sediment/Human Endpoint (Table 23)	-	-	-	-		-
Surface Water/Ecological Endpoint (Table 24)	-	-	-	-		-
Sediment/Ecological Endpoint (Table 25)	-	-	-	-		-
Surface Soil (Table 26)	L	L	L	LLL	e -	G

#### **DIRECTIONS** (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box below.

#### Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

#### HHE MODULE RATING

#### HHE Ratings (for reference only)

G

Combination	Rating		
HHH	A		
HHM	В		
HHL			
НММ	С		
HML			
MMM	D		
HLL	_		
MML	E		
MLL	F		
LLL	G		
	Evaluation Pending		
Alternative Module Ratings	No Longer Required		
	No Known or Suspected MC Hazard		

**MRS Priority** 

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS priority is the single highest priority; record this number in the MRS or Alternative Priority box at the bottom of the table.

**Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		A	1		
A	2	В	2	A	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Pending	Evaluation Pending		Evaluation Pending	
No Longer I	Required	No Longer Required		No Longer Required	
	No Known or Suspected Explosive Hazard		No Known or Suspected CWM Hazard		ected MC Hazard
	M	RS or ALTERNAT	IVE PRIORITY	8	, <u> </u>

MRS 14 - Page - 22

#### **APPENDIX L**

#### **REFERENCE COPIES**

Electronic copy included on enclosed CD

September 2007 Contract W912DY-04-D-0005